tapeAudioRestoration.py 36.1 KB
Newer Older
Nadir Dalla Pozza's avatar
Nadir Dalla Pozza committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
#!/usr/bin/env python

"""
MPAI CAE-ARP Tape Audio Restoration.

Implements MPAI CAE-ARP Tape Audio Restoration Technical Specification.
It identifies and restore portions of the Preservation Audio File, providing:
- Restored Audio Files;
- Editing List
"""

import array
import matplotlib.pyplot as plt
import numpy as np
import os
import shutil
import sys
import yaml
from argparse import ArgumentParser, RawTextHelpFormatter
from control import c2d, TransferFunction
from numpy import ndarray
from scipy.io import wavfile
from scipy.signal import freqs, freqz, tf2zpk, zpk2tf, lfilter

__author__ = "Nadir Dalla Pozza"
__copyright__ = "Copyright 2022, Audio Innova S.r.l."
__credits__ = ["Niccolò Pretto", "Nadir Dalla Pozza", "Sergio Canazza"]
__license__ = "GPL v3.0"
__version__ = "1.0.1"
__maintainer__ = "Nadir Dalla Pozza"
__email__ = "nadir.dallapozza@unipd.it"
__status__ = "Production"


class CC:
    """
    Variables for customizing console colors
    """
    PURPLE = '\033[95m'
    CYAN = '\033[96m'
    DARK_CYAN = '\033[36m'
    BLUE = '\033[94m'
    GREEN = '\033[92m'
    YELLOW = '\033[93m'
    RED = '\033[91m'
    BOLD = '\033[1m'
    UNDERLINE = '\033[4m'
    END = '\033[0m'


def get_arguments() -> tuple[str, str, str, float, str, float, bool]:
    """
    Method to obtain arguments from config.yaml file or command line.
    Default config.yaml, ignored if a command line argument is passed.
    :return: tuple consisting of nine variables:
             1) str specifying the working path;
             2) str specifying the name of the Preservation files, which is key element to retrieve necessary files;
             3) str specifying the equalization standard used when the tape was recorded;
             4) float specifying the speed used when the tape was recorded;
             5) str specifying the equalization standard used when the tape was read;
             6) float specifying the speed used when the tape was read;
             7) bool specifying if filter figures should be plotted.
    """

    if len(sys.argv) > 1:
        # Read from command line
        parser = ArgumentParser(
            prog="python3 tapeAudioRestoration.py",
            formatter_class=RawTextHelpFormatter,
            description="A tool that implements MPAI CAE-ARP Tape Audio Restoration Technical Specification.\n"
                        "By default, the configuration parameters are loaded from ./config.yaml file,\n"
                        "but, alternately, you can pass command line arguments to replace them."
        )
        parser.add_argument(
            "-w",
            "--working-path",
            help="Specify the Working Path, where all input files are stored",
            required=True
        )
        parser.add_argument(
            "-f",
            "--files-name",
            help="Specify the name of the Preservation files (without extension)",
            required=True
        )
        parser.add_argument(
            "-ew",
            "--equalization-w",
            help="Specify the name of the equalization standard used when the tape was recorded",
            required=True
        )
        parser.add_argument(
            "-sw",
            "--speed-w",
            help="Specify the speed used when the tape was recorded",
            required=True
        )
        parser.add_argument(
            "-er",
            "--equalization-r",
            help="Specify the name of the equalization standard used when the tape was read",
            required=True
        )
        parser.add_argument(
            "-sr",
            "--speed-r",
            help="Specify the speed used when the tape was read",
            required=True
        )
        parser.add_argument(
            "-p",
            "--plot-figures",
            help="Specify if filter figures should be plotted [true, false].",
            required=True
        )
        args = parser.parse_args()
        working_path = args.working_path
        files_name = args.files_name
        standard_w = args.equalization_w
        speed_w = float(args.speed_w)
        standard_r = args.equalization_r
        speed_r = float(args.speed_r)
        plots = False
        if args.plot_figures in ('true', 'True'):
            plots = True
        elif args.plot_figures not in ('false', 'False'):
            print(CC.RED + 'Invalid PLOT input argument!' + CC.END)
            quit(os.EX_CONFIG)
    else:
        # Read configuration file
        config = object
        try:
            config = yaml.safe_load(open('config.yaml', 'r'))
            if 'WORKING_PATH' not in config:
                print(CC.RED + 'WORKING_PATH key not found in config.yaml!' + CC.END)
                quit(os.EX_CONFIG)
            if 'FILES_NAME' not in config:
                print(CC.RED + 'FILES_NAME key not found in config.yaml!' + CC.END)
                quit(os.EX_CONFIG)
            if 'STANDARD_W' not in config:
                print(CC.RED + 'STANDARD_W key not found in config.yaml!' + CC.END)
                quit(os.EX_CONFIG)
            if 'SPEED_W' not in config:
                print(CC.RED + 'SPEED_W key not found in config.yaml!' + CC.END)
                quit(os.EX_CONFIG)
            if 'STANDARD_R' not in config:
                print(CC.RED + 'STANDARD_R key not found in config.yaml!' + CC.END)
                quit(os.EX_CONFIG)
            if 'SPEED_R' not in config:
                print(CC.RED + 'SPEED_R key not found in config.yaml!' + CC.END)
                quit(os.EX_CONFIG)
            if 'PLOTS' not in config:
                print(CC.RED + 'PLOTS key not found in config.yaml!' + CC.END)
                quit(os.EX_CONFIG)
        except FileNotFoundError:
            print(CC.RED + 'config.yaml file not found!' + CC.END)
            quit(os.EX_NOINPUT)
        working_path = config['WORKING_PATH']
        files_name = config['FILES_NAME']
        standard_w = config['STANDARD_W']
        speed_w = config['SPEED_W']
        standard_r = config['STANDARD_R']
        speed_r = config['SPEED_R']
        plots = False
        if config['PLOTS'] in (True, 'true', 'True'):
            plots = True
        elif config['PLOTS'] not in (False, 'false', 'False'):
            print(CC.RED + 'Invalid PLOT input argument!' + CC.END)
            quit(os.EX_CONFIG)
    return working_path, files_name, standard_w, speed_w, standard_r, speed_r, plots


def check_input(working_path: str, files_name: str, standard_w: str, speed_w: float, standard_r: str, speed_r: float) -> tuple[str, str, str, str]:
    """
    Method to check that passed arguments are correct and that the environment is conformant to the standard;
    :param working_path: str representing the path where all files resulting from previous AIMs are stored,
    :param files_name: str representing the Preservation files name, to identify the input directory,
    :param standard_w: str specifying the equalization standard used when the tape was recorded,
    :param speed_w: float specifying the speed used when the tape was recorded,
    :param standard_r: str specifying the equalization standard used when the tape was read,
    :param speed_r: float specifying the speed used when the tape was read.
    :return: tuple consisting of three variables:
             1) str representing the path where the Preservation Audio File is stored;
             2) str representing the path where the files to be processed during the current execution are stored;
             3) the operating standard_w;
             4) the operating standard_r.
    """

    # Check for working path existence
    if not os.path.exists(working_path):
        print(CC.RED + 'The specified WORKING_PATH is non-existent!' + CC.END)
        quit(os.EX_CONFIG)
    # Check for Preservation Audio File existence
    audio_file = files_name + '.wav'
    paf_path = os.path.join(working_path, 'PreservationAudioFile', audio_file)
    if not os.path.exists(paf_path):
        print(CC.RED + 'Preservation Audio File not found!' + CC.END)
        quit(os.EX_NOINPUT)
    # Check for temp directory existence
    temp_path = os.path.join(working_path, 'temp')
    if not os.path.exists(temp_path):
        print(CC.RED + 'WORKING_PATH structure is not conformant!' + CC.END)
        quit(os.EX_NOINPUT)
    # Check for input directory existence
    temp_path = os.path.join(temp_path, files_name)
    if not os.path.exists(temp_path):
        print(CC.RED + 'The specified FILES_NAME has no corresponding files!' + CC.END)
        quit(os.EX_NOINPUT)

    # Configuration parameters check

    # Recording tape speed check
    if speed_w != 3.75 and speed_w != 7.5 and speed_w != 15 and speed_w != 30:
        print(
            CC.RED + 'Incorrect SPEED_W: \'' + str(speed_w) + '\'. Accepted value are: 3.75, 7.5, 15, 30.' + CC.END
        )
        quit(os.EX_CONFIG)

    # Reading tape speed check.
    if speed_r != 3.75 and speed_r != 7.5 and speed_r != 15 and speed_r != 30:
        print(
            CC.RED + 'Incorrect SPEED_R: \'' + str(speed_r) + '\'. Accepted value are: 3.75, 7.5, 15, 30.' + CC.END
        )
        quit(os.EX_CONFIG)

    # Equalization standard check.
    if not (standard_r == 'CCIR' or standard_r == 'NAB'):
        print(
            CC.RED + 'Incorrect STANDARD_R: \'' + standard_r + '\'. Accepted values are: CCIR, NAB.' + CC.END
        )
        quit(os.EX_CONFIG)
    if not (standard_w == 'CCIR' or standard_w == 'NAB'):
        print(
            CC.RED + 'Incorrect STANDARD_W: \'' + standard_w + '\'. Accepted values are: CCIR, NAB.' + CC.END
        )
        quit(os.EX_CONFIG)

    # CCIR speed check.
    if standard_w == 'CCIR' and speed_w == 3.75:
        print(
            CC.YELLOW + 'CCIR is undefined at 3.75 ips. Recording equalization standard is set to NAB.' + CC.END
        )
        standard_w = 'NAB'
    if standard_r == 'CCIR' and speed_r == 3.75:
        print(
            CC.YELLOW + 'CCIR is undefined at 3.75 ips. Reading equalization standard is set to NAB.' + CC.END
        )
        standard_r = 'NAB'
    # NAB speed check.
    if standard_w == 'NAB' and speed_w == 30:
        print(
            CC.YELLOW + 'NAB is undefined at 30 ips. Recording equalization standard is set to CCIR.' + CC.END
        )
        standard_w = 'CCIR'
    if standard_r == 'NAB' and speed_r == 30:
        print(
            CC.YELLOW + 'NAB is undefined at 30 ips. Reading equalization standard is set to CCIR.' + CC.END
        )
        standard_r = 'CCIR'

    return paf_path, temp_path, standard_w, standard_r


def get_correction_filter(standard_w: str, speed_w: float, standard_r: str, speed_r: float, fs: int) -> tuple[array, array, float, int]:
    """
    Method to establish correct filter transfer function coefficients;
    :param standard_w: str specifying the equalization standard used when the tape was recorded,
    :param speed_w: float specifying the speed used when the tape was recorded,
    :param standard_r: str specifying the equalization standard used when the tape was read,
    :param speed_r: float specifying the speed used when the tape was read,
    :param fs: float specifying the sampling frequency.
    :return: tuple consisting of four variables:
             1) array representing the filter numerator coefficients;
             2) array representing the filter denominator coefficients;
             3) float specifying the operating sampling frequency;
             4) int informing about the case number.
    """
    # CCIR time constants.
    t2_30 = 17.5 * 10 ** (-6)  # time constant CCIR_30
    t2_15 = 35 * 10 ** (-6)  # time constant CCIR_15
    t2_7 = 70 * 10 ** (-6)  # time constant CCIR_7.5

    # NAB time constants.
    t3 = 3180 * 10 ** (-6)
    t4_15 = 50 * 10 ** (-6)  # time constant NAB_15
    t4_7 = 50 * 10 ** (-6)  # time constant NAB_7.5
    t4_3 = 90 * 10 ** (-6)  # time constant NAB_3.75

    a = []
    b = []
    case = -1
    # This section will establish which time constants must be modified to obtain the desired equalisation standard.
    if standard_w == 'CCIR':
        if speed_w == 30:
            if standard_r == 'NAB':
                # Case 1
                if speed_r == 15:
                    fs = 2 * fs  # Doubling the sampling frequency
                    # Correction filter: NABw15_mod + CCIRr30
                    # - NAB constants divided by 2
                    t3 = t3 / 2
                    t4 = t4_15 / 2
                    # - CCIR_30 constant not altered
                    t2 = t2_30
                    # Filter coefficients
                    a = [t2 * t3, t2 + t3, 1]
                    b = [t3 * t4, t3, 0]
                    # Plot information
                    case = 1
                # Case 2
                elif speed_r == 7.5:
                    fs = 4 * fs  # Quadrupling the sampling frequency
                    # Correction filter: NABw7.5_mod + CCIRr30
                    # - NAB constants divided by 4
                    t3 = t3 / 4
                    t4 = t4_7 / 4
                    # - CCIR_30 constant not altered
                    t2 = t2_30
                    # Filter coefficients
                    a = [t2 * t3, t2 + t3, 1]
                    b = [t3 * t4, t3, 0]
                    # Plot information
                    case = 2
                # Case 3
                else:  # speed_r == 3.75
                    fs = 8 * fs  # Multiplying by 8 the sampling frequency
                    # Correction filter: NABw3.75_mod + CCIRr30
                    # - NAB constants divided by 8
                    t3 = t3 / 8
                    t4 = t4_3 / 8
                    # - CCIR_30 constant not altered
                    t2 = t2_30
                    # Filter coefficients
                    a = [t2 * t3, t2 + t3, 1]
                    b = [t3 * t4, t3, 0]
                    # Plot information
                    case = 3
            else:  # standard_r == 'CCIR'
                # Case 31
                if speed_r == 30:
                    print('Reference case: 31')
                    print(CC.GREEN + 'Nothing to do!' + CC.END)
                    quit(os.EX_OK)
                # Case 15
                elif speed_r == 15:
                    fs = 2 * fs  # Doubling sampling frequency
                    # Plot information
                    case = 15
                # Case 16
                else:  # speed_r == 7.5
                    fs = 4 * fs  # Quadrupling the sampling frequency
                    # Plot information
                    case = 16
        elif speed_w == 15:
            if standard_r == 'NAB':
                # Case 28
                if speed_r == 15:
                    # No speed change
                    # Correction filter: NABw15 + CCIRr15
                    # - NAB_15 constants not altered
                    t4 = t4_15
                    # - CCIR_30 constant not altered
                    t2 = t2_15
                    # Filter coefficients
                    a = [t2 * t3, t2 + t3, 1]
                    b = [t3 * t4, t3, 0]
                    # Plot information
                    case = 28
                # Case 6
                elif speed_r == 7.5:
                    fs = 2 * fs  # Doubling the sampling frequency
                    # Correction filter: NABw7.5_mod + CCIRr15
                    # - NAB constants divided by 2
                    t3 = t3 / 2
                    t4 = t4_7 / 2
                    # - CCIR_15 constant not altered
                    t2 = t2_15
                    # Filter coefficients
                    a = [t2 * t3, t2 + t3, 1]
                    b = [t3 * t4, t3, 0]
                    # Plot information
                    case = 6
                # Case 7
                else:  # speed_r == 3.75
                    fs = 4 * fs  # Quadrupling the sampling frequency
                    # Correction filter: NABw3.75_mod + CCIRr15
                    # - NAB constants divided by 4
                    t3 = t3 / 4
                    t4 = t4_3 / 4
                    # - CCIR_15 constant not altered
                    t2 = t2_15
                    # Filter coefficients
                    a = [t2 * t3, t2 + t3, 1]
                    b = [t3 * t4, t3, 0]
                    # Plot information
                    case = 7
            else:  # standard_r == 'CCIR'
                # Case 19
                if speed_r == 30:
                    fs = fs / 2  # Halving the sampling frequency
                    # Plot information
                    case = 19
                # Case 33
                elif speed_r == 15:
                    print('Reference case: 33')
                    print(CC.GREEN + 'Nothing to do!' + CC.END)
                    quit(os.EX_OK)
                # Case 20
                else:  # speed_r == 7.5
                    fs = 2 * fs  # Doubling the sampling frequency
                    # Plot information
                    case = 20
        else:  # speed_w == 7.5
            if standard_r == 'NAB':
                # Case 10
                if speed_r == 15:
                    fs = fs / 2  # Halving the sampling frequency
                    # Correction filter: NABw15_mod + CCIRr7.5
                    # - NAB constants multiplied by 2
                    t3 = t3 * 2
                    t4 = t4_15 * 2
                    # - CCIR_7.5 constant not altered
                    t2 = t2_7
                    # Filter coefficients
                    a = [t2 * t3, t2 + t3, 1]
                    b = [t3 * t4, t3, 0]
                    # Plot information
                    case = 10
                # Case 30
                elif speed_r == 7.5:
                    # No speed change
                    # Correction filter: NABw7.5 + CCIRr7.5
                    # - NAB_7.5 constant not altered
                    t4 = t4_7
                    # - CCIR_7.5 constant not altered
                    t2 = t2_7
                    # Filter coefficients
                    a = [t2 * t3, t2 + t3, 1]
                    b = [t3 * t4, t3, 0]
                    # Plot information
                    case = 30
                # Case 11
                else:  # speed_r == 3.75
                    fs = 2 * fs  # Doubling the sampling frequency
                    # Correction filter: NABw3.75_mod + CCIRr7.5
                    # - NAB constants divided by 2
                    t3 = t3 / 2
                    t4 = t4_3 / 2
                    # - CCIR_7.5 constant not altered
                    t2 = t2_7
                    # Filter coefficients
                    a = [t2 * t3, t2 + t3, 1]
                    b = [t3 * t4, t3, 0]
                    # Plot information
                    case = 11
            else:  # standard_r == 'CCIR'
                # Case 23
                if speed_r == 30:
                    fs = fs / 4  # Quartering the sampling frequency
                    # Plot information
                    case = 23
                # Case 24
                elif speed_r == 15:
                    fs = fs / 2  # Halving the sampling frequency
                    # Plot information
                    case = 24
                # Case 35
                else:  # speed_r == 7.5
                    print('Reference case: 35')
                    print(CC.GREEN + 'Nothing to do!' + CC.END)
                    quit(os.EX_OK)
    else:  # standard_w == 'NAB'
        if speed_w == 15:
            if standard_r == 'NAB':
                # Case 32
                if speed_r == 15:
                    print('Reference case: 32')
                    print(CC.GREEN + 'Nothing to do!' + CC.END)
                    quit(os.EX_OK)
                # Case 17
                elif speed_r == 7.5:
                    fs = 2 * fs  # Doubling the sampling frequency
                    # Correction filter: NABw7.5_mod + NABr15
                    # - NABw constants divided by 2
                    t3_mod = t3 / 2
                    t4_mod = t4_7 / 2
                    # - NABr constant not altered
                    t4 = t4_15
                    # Filter coefficients
                    a = [t3 * t3_mod * t4, t3 * (t3_mod + t4), t3]
                    b = [t3 * t3_mod * t4_mod, t3_mod * (t3 + t4_mod), t3_mod]
                    # Plot information
                    case = 17
                # Case 18
                else:  # speed_r == 3.75
                    fs = 4 * fs  # Quadrupling the sampling frequency
                    # Correction filter: NABw3.75_mod + NABr15
                    # - NAB constants divided by 4
                    t3_mod = t3 / 4
                    t4_mod = t4_3 / 4
                    # - NABr constant not altered
                    t4 = t4_15
                    # Filter coefficients
                    a = [t3 * t3_mod * t4, t3 * (t3_mod + t4), t3]
                    b = [t3 * t3_mod * t4_mod, t3_mod * (t3 + t4_mod), t3_mod]
                    # Plot information
                    case = 18
            else:  # standard_r == 'CCIR'
                # Case 4
                if speed_r == 30:
                    fs = fs / 2  # Halving the sampling frequency
                    # Correction filter: CCIRw30_mod + NABr15
                    # - CCIR_30 constant multiplied by 2
                    t2 = t2_30 * 2
                    # - NAB_15 constant not altered
                    t4 = t4_15
                    # Filter coefficients
                    a = [t3 * t4, t3, 0]
                    b = [t2 * t3, t2 + t3, 1]
                    # Plot information
                    case = 4
                # Case 27
                elif speed_r == 15:
                    # No speed change
                    # Correction filter: CCIRw15 + NABr15
                    # - CCIR_15 constant not altered
                    t2 = t2_15
                    # - NAB_15 constant not altered
                    t4 = t4_15
                    # Filter coefficients
                    a = [t3 * t4, t3, 0]
                    b = [t2 * t3, t2 + t3, 1]
                    # Plot information
                    case = 27
                # Case 5
                else:  # speed_r == 7.5
                    fs = fs * 2  # Doubling the sampling frequency
                    # Correction filter: CCIRw7.5_mod + NABr15
                    # - CCIR_7.5 constant divided by 2
                    t2 = t2_7 / 2
                    # - NAB_15 constant not altered
                    t4 = t4_15
                    # Filter coefficients
                    a = [t3 * t4, t3, 0]
                    b = [t2 * t3, t2 + t3, 1]
                    # Plot information
                    case = 5
        elif speed_w == 7.5:
            if standard_r == 'NAB':
                # Case 21
                if speed_r == 15:
                    fs = fs / 2  # Halving the sampling frequency
                    # Correction filter: NABw15_mod + NABr7.5
                    # - NABw constants multiplied by 2
                    t3_mod = t3 * 2
                    t4_mod = t4_15 * 2
                    # - NABr constant not altered
                    t4 = t4_7
                    # Filter coefficients
                    a = [t3 * t3_mod * t4, t3 * (t3_mod + t4), t3]
                    b = [t3 * t3_mod * t4_mod, t3_mod * (t3 + t4_mod), t3_mod]
                    # Plot information
                    case = 21
                # Case 34
                elif speed_r == 7.5:
                    print('Reference case: 34')
                    print(CC.GREEN + 'Nothing to do!' + CC.END)
                    quit(os.EX_OK)
                # Case 22
                else:  # speed_r == 3.75
                    fs = 2 * fs  # Doubling the sampling frequency
                    # Correction filter: NABw3.75_mod + NABr7.5
                    # - NABw constants divided by 2
                    t3_mod = t3 / 2
                    t4_mod = t4_3 / 2
                    # - NABr constant not altered
                    t4 = t4_7
                    # Filter coefficients
                    a = [t3 * t3_mod * t4, t3 * (t3_mod + t4), t3]
                    b = [t3 * t3_mod * t4_mod, t3_mod * (t3 + t4_mod), t3_mod]
                    # Plot information
                    case = 22
            else:  # standard_r == 'CCIR'
                # Case 8
                if speed_r == 30:
                    fs = fs / 4  # Quartering the sampling frequency
                    # Correction filter: CCIRw30_mod + NABr7.5
                    # - CCIR_30 constant multiplied by 4
                    t2 = t2_30 * 4
                    # - NAB_7.5 constant not altered
                    t4 = t4_7
                    # Filter coefficients
                    a = [t3 * t4, t3, 0]
                    b = [t2 * t3, t2 + t3, 1]
                    # Plot information
                    case = 8
                # Case 9
                elif speed_r == 15:
                    fs = fs / 2  # Halving the sampling frequency
                    # Correction filter: CCIRw15_mod + NABr7.5
                    # - CCIR_15 constant multiplied by 2
                    t2 = t2_15 * 2
                    # - NAB_7.5 constant not altered
                    t4 = t4_7
                    # Filter coefficients
                    a = [t3 * t4, t3, 0]
                    b = [t2 * t3, t2 + t3, 1]
                    # Plot information
                    case = 9
                # Case 29
                else:  # speed_r == 7.5
                    # No speed change
                    # Correction filter: CCIRw7.5 + NABr7.5
                    # - CCIR_7.5 constant not altered
                    t2 = t2_7
                    # - NAB_7.5 constant not altered
                    t4 = t4_7
                    # Filter coefficients
                    a = [t3 * t4, t3, 0]
                    b = [t2 * t3, t2 + t3, 1]
                    # Plot information
                    case = 29
        else:  # speed_w == 3.75
            if standard_r == 'NAB':
                # Case 25
                if speed_r == 15:
                    fs = fs / 4  # Quartering the sampling frequency
                    # Correction filter: NABw15_mod + NABr3.75
                    # - NAB constants multiplied by 4
                    t3_mod = t3 * 4
                    t4_mod = t4_15 * 4
                    # - NABr constant not altered
                    t4 = t4_3
                    # Filter coefficients
                    a = [t3 * t3_mod * t4, t3 * (t3_mod + t4), t3]
                    b = [t3 * t3_mod * t4_mod, t3_mod * (t3 + t4_mod), t3_mod]
                    # Plot information
                    case = 25
                # Case 26
                elif speed_r == 7.5:
                    fs = fs / 2  # Halving the sampling frequency
                    # Correction filter: NABw7.5_mod + NABr3.75
                    # - NAB constants multiplied by 2
                    t3_mod = t3 * 2
                    t4_mod = t4_7 * 2
                    # - NABr constant not altered
                    t4 = t4_3
                    # Filter coefficients
                    a = [t3 * t3_mod * t4, t3 * (t3_mod + t4), t3]
                    b = [t3 * t3_mod * t4_mod, t3_mod * (t3 + t4_mod), t3_mod]
                    # Plot information
                    case = 26
                # Case 36
                else:  # speed_r == 3.75
                    print('Reference case: 36')
                    print(CC.GREEN + 'Nothing to do!' + CC.END)
                    quit(os.EX_OK)
            else:  # standard_r == 'CCIR'
                # Case 12
                if speed_r == 30:
                    fs = fs / 8  # Dividing by 8 the sampling frequency
                    # Correction filter: CCIRw30_mod + NABr3.75
                    # - CCIR_30 constant multiplied by 8
                    t2 = t2_30 * 8
                    # - NAB_3.75 constant not altered
                    t4 = t4_3
                    # Filter coefficients
                    a = [t3 * t4, t3, 0]
                    b = [t2 * t3, t2 + t3, 1]
                    # Plot information
                    case = 12
                # Case 13
                elif speed_r == 15:
                    fs = fs / 4  # Quartering the sampling frequency
                    # Correction filter: CCIRw15_mod + NABr3.75
                    # - CCIR_15 constant multiplied by 4
                    t2 = t2_15 * 4
                    # - NAB_3.75 constant not altered
                    t4 = t4_3
                    # Filter coefficients
                    a = [t3 * t4, t3, 0]
                    b = [t2 * t3, t2 + t3, 1]
                    # Plot information
                    case = 13
                # Case 14
                else:  # speed_r == 7.5
                    fs = fs / 2  # Halving the sampling frequency
                    # Correction filter: CCIRw7.5_mod + NABr3.75
                    # - CCIR_7.5 constant multiplied by 2
                    t2 = t2_7 * 2
                    # - NAB_3.75 constant not altered
                    t4 = t4_3
                    # Filter coefficients
                    a = [t3 * t4, t3, 0]
                    b = [t2 * t3, t2 + t3, 1]
                    # Plot information
                    case = 14
    return a, b, fs, case


def correction(a: array, b: array, paf: ndarray, fs: int, plots: bool) -> ndarray:
    """
    Apply a correction filter to a Preservation Audio File;
    :param a: array of coefficients, specifying the numerator of filter transfer function,
    :param b: array of coefficients, specifying in the denominator of filter transfer function,
    :param paf: ndarray specifying the raw audio data of the Preservation Audio File,
    :param fs: int specifying the operational sampling frequency,
    :param plots: bool specifying if filter plots should be displayed.
    :return: the corrected audio as a Restored Audio File.
    """

    # Analog transfer function
    h_a = TransferFunction(a, b)
    # Analog frequency vector
    w_a = np.logspace(np.log10(1), np.log10(fs * np.pi), 5000)

    if plots:
        # Analog filter frequency response
        w_t, h_t = freqs(a, b, worN=w_a)
        # Plot analog graph
        # - Magnitude
        plt.subplot(2, 1, 1)
        plt.semilogx(w_t / (2 * np.pi), 20 * np.log10(abs(h_t)))
        plt.xlim([1, 24000])
        plt.xlabel('Frequency')
        plt.ylim([-40, 40])
        plt.ylabel('Amplitude response [dB]')
        plt.grid(True)
        # - Phase
        plt.subplot(2, 1, 2)
        plt.semilogx(w_t / (2 * np.pi), np.angle(h_t) * 180 / np.pi)
        plt.xlim([1, 24000])
        plt.xlabel('Frequency')
        plt.ylabel('Phase [deg]')
        plt.grid(True)

    # Digital transfer function through bilinear digitisation
    h_d = c2d(h_a, 1 / fs, 'bilinear')
    num_d = h_d.num[0][0]  # Inspect Hd.num to see why [0][0] is needed...
    den_d = h_d.den[0][0]  # Same story here
    # Digital frequency vector
    w_d = np.logspace(np.log10(1), np.log10(fs / 2), 5000)

    if plots:
        # Digital filter frequency response
        w_n, h_n = freqz(num_d, den_d, worN=w_d, fs=fs)
        # Plot digital graph
        # - Magnitude
        plt.subplot(2, 1, 1)
        plt.semilogx(w_n, 20 * np.log10(abs(h_n)), '--')
        plt.legend(['Analog', 'Bilinear'])
        # - Phase
        plt.subplot(2, 1, 2)
        plt.semilogx(w_n, np.angle(h_n) * 180 / np.pi, '--')
        plt.legend(['Analog', 'Bilinear'])

    # Pole check

    # New pole frequency
    pole_frequency = 2
    # Move to zero-pole representation
    z, p, k = tf2zpk(a, b)
    # Check if the function presents a pole at 0 Hz
    for i in range(len(p)):
        if p[i] == 0:
            # Replace pole
            p[i] = -pole_frequency * 2 * np.pi
            print('\n' + CC.PURPLE + 'Pole at 0 Hz replaced!' + CC.END)
            # Back to transfer function representation
            ap, bp = zpk2tf(z, p, k)

            # Analog transfer function
            hp_a = TransferFunction(ap, bp)

            if plots:
                # Analog filter frequency response
                wp_t, hp_t = freqs(ap, bp, worN=w_a)
                # Plot analog graph
                # - Magnitude
                plt.subplot(2, 1, 1)
                plt.semilogx(wp_t / (2 * np.pi), 20 * np.log10(abs(hp_t)))
                # - Phase
                plt.subplot(2, 1, 2)
                plt.semilogx(wp_t / (2 * np.pi), np.angle(hp_t) * 180 / np.pi)

            # Digital transfer function through bilinear digitisation
            hp_d = c2d(hp_a, 1 / fs, 'bilinear')
            num_d = hp_d.num[0][0]
            den_d = hp_d.den[0][0]

            if plots:
                # Digital filter frequency response
                wp_n, hp_n = freqz(num_d, den_d, worN=w_d, fs=fs)
                # Plot digital graph
                # - Magnitude
                plt.subplot(2, 1, 1)
                plt.semilogx(wp_n, 20 * np.log10(abs(hp_n)), '--')
                plt.legend(['Analog', 'Bilinear', 'Pole - Analog', 'Pole - Digital'])
                # - Phase
                plt.subplot(2, 1, 2)
                plt.semilogx(wp_n, np.angle(hp_n) * 180 / np.pi, '--')
                plt.legend(['Analog', 'Bilinear', 'Pole - Analog', 'Pole - Digital'])

    if plots:
        plt.show()

    print('\nFiltering Preservation Audio File...')
    # Filter Preservation Audio File
    raf = lfilter(num_d, den_d, paf, axis=0)
    # Again, wavfile.write() is stupid, and you must cast everything to not destroy your ears...
    raf = np.rint(raf).astype(paf.dtype)
    return raf


def save_file(file: ndarray, fs: int, temp_path: str, name: str):
    """
    Save an audio file to the given path with name 1.wav;
    :param file: ndarray specifying the raw audio data,
    :param fs: int specifying the operational sampling frequency,
    :param temp_path: str specifying the path where the file will be saved,
    :param name: str specifying the file name.
    :return: exit codes corresponding to the execution status.
    """
    raf_path = os.path.join(temp_path, 'RestoredAudioFiles')
    make_raf = False
    if not os.path.exists(raf_path):
        # Create directory
        os.mkdir(raf_path)
        make_raf = True
        print("Restored Audio Files directory '% s' created" % raf_path)
    else:
        print((CC.PURPLE + "Restored Audio Files directory '% s' already exists!" + CC.END) % raf_path)
        overwrite = input('Do you want to overwrite it? [y/n]: ')
        if overwrite.casefold() == 'y':
            # Overwrite directory
            shutil.rmtree(raf_path)
            os.mkdir(raf_path)
            make_raf = True
            print('Restored Audio Files directory overwritten')
        elif overwrite.casefold() != 'n':
            print(CC.RED + 'Unknown command, exiting' + CC.END)
            quit(os.EX_USAGE)
    if make_raf:
        print("Saving Restored Audio File to: '%s' ..." % raf_path)
        wavfile.write(os.path.join(raf_path, name + '.wav'), fs, file)


def main():
    """
    Main execution method.
    :return: exit codes corresponding to the execution status.
    """

    print(CC.BOLD + "\nWelcome to ARP Tape Audio Restoration!" + CC.END)
    print("You are using Python version: " + sys.version)

    # Get the input from config.yaml or command line
    working_path, files_name, standard_w, speed_w, standard_r, speed_r, plots = get_arguments()
    # Check if input is correct
    paf_path, temp_path, standard_w, standard_r = check_input(working_path, files_name, standard_w, speed_w, standard_r, speed_r)

    # Display input parameters
    print('\nInput parameters:')
    print('    WORKING_PATH: ' + working_path)
    print('    FILES_NAME:   ' + files_name)
    print('    STANDARD_W:   ' + standard_w)
    print('    SPEED_W:      ' + str(speed_w) + ' ips')
    print('    STANDARD_R:   ' + standard_r)
    print('    SPEED_R:      ' + str(speed_r) + ' ips')

    # Preservation Audio File check
    print("Opening '%s'..." % paf_path)
    fs, paf = wavfile.read(paf_path)
    print('Preservation Audio File opened!')
    print('    FS:           ' + str(fs) + ' Hz\n')

    # Decision stage
    a, b, fs, case = get_correction_filter(standard_w, speed_w, standard_r, speed_r, fs)

    # Casting FS to int because wavfile.write() is stupid
    fs = round(fs)
    print('Reference case: ' + str(case))
    print('Operational FS: ' + str(fs) + ' Hz.')

    # Correction phase
    if len(a) != 0:
        # Not all cases present a correction filter!
        raf = correction(paf, a, b, fs, plots)
        save_file(raf, fs, temp_path, '1')
    else:
        # Just save Restored Audio File, but with modified fs
        save_file(paf, fs, temp_path, '1')

    # End
    print(CC.GREEN + CC.BOLD + "Success!" + CC.END + '\n')


if __name__ == '__main__':
    main()