main.py 29.8 KB
Newer Older
Nadir Dalla Pozza's avatar
Nadir Dalla Pozza committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
#!/usr/bin/env python

"""
MPAI CAE-ARP Tape Audio Restoration.

Implements MPAI CAE-ARP Tape Audio Restoration Technical Specification.
It identifies and restore portions of the Preservation Audio File, providing:
- Restored Audio Files;
- Editing List
"""

import matplotlib.pyplot as plt
import numpy as np
import os
import shutil
import yaml
from control import c2d, TransferFunction
from scipy.io import wavfile
from scipy.signal import freqs, freqz, tf2zpk, zpk2tf, lfilter

__author__ = "Nadir Dalla Pozza"
__copyright__ = "Copyright 2022, Audio Innova S.r.l."
__credits__ = ["Niccolò Pretto", "Nadir Dalla Pozza", "Sergio Canazza"]
__license__ = "GPL v3.0"
__version__ = "1.0.1"
__maintainer__ = "Nadir Dalla Pozza"
__email__ = "nadir.dallapozza@unipd.it"
__status__ = "Production"


# Class for customizing Console Colors
class CC:
    PURPLE = '\033[95m'
    CYAN = '\033[96m'
    DARK_CYAN = '\033[36m'
    BLUE = '\033[94m'
    GREEN = '\033[92m'
    YELLOW = '\033[93m'
    RED = '\033[91m'
    BOLD = '\033[1m'
    UNDERLINE = '\033[4m'
    END = '\033[0m'


def save_file(file):
    if not os.path.exists(temp_path):
        # Create directory
        os.mkdir(temp_path)
        print("temp directory '% s' created" % temp_path)
    raf_path = os.path.join(temp_path, 'RestoredAudioFiles')
    make_raf = False
    if not os.path.exists(raf_path):
        # Create directory
        os.mkdir(raf_path)
        make_raf = True
        print("Restored Audio Files directory '% s' created" % raf_path)
    else:
        print((CC.PURPLE + "Restored Audio Files directory '% s' already exists!" + CC.END) % raf_path)
        overwrite = input('Do you want to overwrite it? [y/n]: ')
        if overwrite.casefold() == 'y':
            # Overwrite directory
            shutil.rmtree(raf_path)
            os.mkdir(raf_path)
            make_raf = True
            print('Restored Audio Files directory overwritten')
        elif overwrite.casefold() != 'n':
            print(CC.RED + 'Unknown command, exiting' + CC.END)
            quit(os.EX_USAGE)
    if make_raf:
        print("Saving Restored Audio File to: '%s' ..." % raf_path)
        wavfile.write(os.path.join(raf_path, '1.wav'), FS, file)


if __name__ == '__main__':
    # Read configuration file
    config = object
    try:
        config = yaml.safe_load(open('config.yaml', 'r'))
        if 'WORKING_PATH' not in config:
            print(CC.RED + 'WORKING_PATH key not found in config.yaml!' + CC.END)
            quit(os.EX_CONFIG)
        if 'PRESERVATION_FILE_NAME' not in config:
            print(CC.RED + 'PRESERVATION_FILE_NAME key not found in config.yaml!' + CC.END)
            quit(os.EX_CONFIG)
        if 'STANDARD_W' not in config:
            print(CC.RED + 'STANDARD_W key not found in config.yaml!' + CC.END)
            quit(os.EX_CONFIG)
        if 'SPEED_W' not in config:
            print(CC.RED + 'SPEED_W key not found in config.yaml!' + CC.END)
            quit(os.EX_CONFIG)
        if 'STANDARD_R' not in config:
            print(CC.RED + 'STANDARD_R key not found in config.yaml!' + CC.END)
            quit(os.EX_CONFIG)
        if 'SPEED_R' not in config:
            print(CC.RED + 'SPEED_R key not found in config.yaml!' + CC.END)
            quit(os.EX_CONFIG)
        if 'FS' not in config:
            print(CC.RED + 'FS key not found in config.yaml!' + CC.END)
            quit(os.EX_CONFIG)
        if 'BPS' not in config:
            print(CC.RED + 'BPS key not found in config.yaml!' + CC.END)
            quit(os.EX_CONFIG)
        if 'PLOTS' not in config:
            print(CC.RED + 'PLOTS key not found in config.yaml!' + CC.END)
            quit(os.EX_CONFIG)
    except FileNotFoundError:
        print(CC.RED + 'config.yaml file not found!' + CC.END)
        quit(os.EX_NOINPUT)

    # config.yaml variables
    WORKING_PATH = config['WORKING_PATH']
    PRESERVATION_FILE_NAME = config['PRESERVATION_FILE_NAME']
    STANDARD_W = config['STANDARD_W']
    SPEED_W = config['SPEED_W']
    STANDARD_R = config['STANDARD_R']
    SPEED_R = config['SPEED_R']
    FS = config['FS']
    BPS = config['BPS']
    PLOTS = config['PLOTS']

    # Output path
    temp_path = os.path.join(WORKING_PATH, 'temp', PRESERVATION_FILE_NAME)

    # Configuration parameters check

    # Recording tape speed check
    if SPEED_W != 3.75 and SPEED_W != 7.5 and SPEED_W != 15 and SPEED_W != 30:
        print(
            CC.RED + 'Incorrect SPEED_W: \'' + str(SPEED_W) + '\'. Accepted value are: 3.75, 7.5, 15, 30.' + CC.END
        )
        quit(os.EX_CONFIG)

    # Reading tape speed check.
    if SPEED_R != 3.75 and SPEED_R != 7.5 and SPEED_R != 15 and SPEED_R != 30:
        print(
            CC.RED + 'Incorrect SPEED_R: \'' + str(SPEED_R) + '\'. Accepted value are: 3.75, 7.5, 15, 30.' + CC.END
        )
        quit(os.EX_CONFIG)

    # Equalization standard check.
    if not (STANDARD_R == 'CCIR' or STANDARD_R == 'NAB'):
        print(
            CC.RED + 'Incorrect STANDARD_R: \'' + STANDARD_R + '\'. Accepted values are: CCIR, NAB.' + CC.END
        )
        quit(os.EX_CONFIG)
    if not (STANDARD_W == 'CCIR' or STANDARD_W == 'NAB'):
        print(
            CC.RED + 'Incorrect STANDARD_W: \'' + STANDARD_W + '\'. Accepted values are: CCIR, NAB.' + CC.END
        )
        quit(os.EX_CONFIG)

    # CCIR speed check.
    if STANDARD_W == 'CCIR' and SPEED_W == 3.75:
        print(
            CC.YELLOW + 'CCIR is undefined at 3.75 ips. Recording equalization standard is set to NAB.' + CC.END
        )
        STANDARD_W = 'NAB'
    if STANDARD_R == 'CCIR' and SPEED_R == 3.75:
        print(
            CC.YELLOW + 'CCIR is undefined at 3.75 ips. Reading equalization standard is set to NAB.' + CC.END
        )
        STANDARD_R = 'NAB'
    # NAB speed check.
    if STANDARD_W == 'NAB' and SPEED_W == 30:
        print(
            CC.YELLOW + 'NAB is undefined at 30 ips. Recording equalization standard is set to CCIR.' + CC.END
        )
        STANDARD_W = 'CCIR'
    if STANDARD_R == 'NAB' and SPEED_R == 30:
        print(
            CC.YELLOW + 'NAB is undefined at 30 ips. Reading equalization standard is set to CCIR.' + CC.END
        )
        STANDARD_R = 'CCIR'

    # Sampling frequency check.
    if len(PRESERVATION_FILE_NAME) == 0:
        if FS != 44100 and FS != 48000 and FS != 96000:
            print(
                CC.RED + 'Incorrect FS: \'' + str(FS) + '\'. Accepted values are: 44100, 48000, 96000.' + CC.END
            )
            quit(os.EX_CONFIG)

    # Bits per sample check.
    if BPS != 8 and BPS != 16 and BPS != 24 and BPS != 32:
        print(
            CC.RED + 'Incorrect BPS: \'' + str(BPS) + '\'. Accepted values are: 8, 16, 24, 32.' + CC.END
        )
        quit(os.EX_CONFIG)

    # Display input parameters
    print('Input parameters:')
    print('    WORKING_PATH:           ' + WORKING_PATH)
    print('    PRESERVATION_FILE_NAME: ' + PRESERVATION_FILE_NAME)
    print('    STANDARD_W:             ' + STANDARD_W)
    print('    SPEED_W:                ' + str(SPEED_W) + ' ips')
    print('    STANDARD_R:             ' + STANDARD_R)
    print('    SPEED_R:                ' + str(SPEED_R) + ' ips')
    if len(PRESERVATION_FILE_NAME) == 0:
        print('    FS:                     ' + str(FS) + ' Hz')
    print('    BPS:                    ' + str(BPS) + '\n')

    # Preservation Audio File check
    paf = []
    if len(PRESERVATION_FILE_NAME) > 0:
        audio_file = PRESERVATION_FILE_NAME + '.wav'
        paf_path = os.path.join(WORKING_PATH, 'PreservationAudioFile', audio_file)
        try:
            print("Opening '%s'..." % paf_path)
            FS, paf = wavfile.read(paf_path)
            print('Preservation Audio File opened!')
            print('Overwritten parameters:')
            print('    FS:                     ' + str(FS) + ' Hz\n')
        except OSError:
            print(CC.RED + "Preservation Audio File not found!" + CC.END)
            quit(os.EX_NOINPUT)

    # Equalization standard time constants

    # CCIR time constants.
    t2_30 = 17.5 * 10**(-6)  # time constant CCIR_30
    t2_15 = 35 * 10**(-6)  # time constant CCIR_15
    t2_7 = 70 * 10**(-6)  # time constant CCIR_7.5

    # NAB time constants.
    t3 = 3180 * 10**(-6)
    t4_15 = 50 * 10**(-6)  # time constant NAB_15
    t4_7 = 50 * 10**(-6)  # time constant NAB_7.5
    t4_3 = 90 * 10**(-6)  # time constant NAB_3.75

    # Decision stage

    a = []  # Filter numerator
    b = []  # Filter denominator
    case = 0  # Reference case number

    # This section will establish which time constants must be modified to obtain the desired equalisation standard.
    if STANDARD_W == 'CCIR':
        if SPEED_W == 30:
            if STANDARD_R == 'NAB':
                # Case 1
                if SPEED_R == 15:
                    FS = 2 * FS  # Doubling the sampling frequency
                    # Correction filter: NABw15_mod + CCIRr30
                    # - NAB constants divided by 2
                    t3 = t3 / 2
                    t4 = t4_15 / 2
                    # - CCIR_30 constant not altered
                    t2 = t2_30
                    # Filter coefficients
                    a = [t2 * t3, t2 + t3, 1]
                    b = [t3 * t4, t3, 0]
                    # Plot information
                    case = 1
                # Case 2
                elif SPEED_R == 7.5:
                    FS = 4 * FS  # Quadrupling the sampling frequency
                    # Correction filter: NABw7.5_mod + CCIRr30
                    # - NAB constants divided by 4
                    t3 = t3 / 4
                    t4 = t4_7 / 4
                    # - CCIR_30 constant not altered
                    t2 = t2_30
                    # Filter coefficients
                    a = [t2 * t3, t2 + t3, 1]
                    b = [t3 * t4, t3, 0]
                    # Plot information
                    case = 2
                # Case 3
                else:  # SPEED_R == 3.75
                    FS = 8 * FS  # Multiplying by 8 the sampling frequency
                    # Correction filter: NABw3.75_mod + CCIRr30
                    # - NAB constants divided by 8
                    t3 = t3 / 8
                    t4 = t4_3 / 8
                    # - CCIR_30 constant not altered
                    t2 = t2_30
                    # Filter coefficients
                    a = [t2 * t3, t2 + t3, 1]
                    b = [t3 * t4, t3, 0]
                    # Plot information
                    case = 3
            else:  # STANDARD_R == 'CCIR'
                # Case 31
                if SPEED_R == 30:
                    print('Reference case: 31')
                    print(CC.GREEN + 'Nothing to do!' + CC.END)
                    quit(os.EX_OK)
                # Case 15
                elif SPEED_R == 15:
                    FS = 2 * FS  # Doubling sampling frequency
                    # Plot information
                    case = 15
                # Case 16
                else:  # SPEED_R == 7.5
                    FS = 4 * FS  # Quadrupling the sampling frequency
                    # Plot information
                    case = 16
        elif SPEED_W == 15:
            if STANDARD_R == 'NAB':
                # Case 28
                if SPEED_R == 15:
                    # No speed change
                    # Correction filter: NABw15 + CCIRr15
                    # - NAB_15 constants not altered
                    t4 = t4_15
                    # - CCIR_30 constant not altered
                    t2 = t2_15
                    # Filter coefficients
                    a = [t2 * t3, t2 + t3, 1]
                    b = [t3 * t4, t3, 0]
                    # Plot information
                    case = 28
                # Case 6
                elif SPEED_R == 7.5:
                    FS = 2 * FS  # Doubling the sampling frequency
                    # Correction filter: NABw7.5_mod + CCIRr15
                    # - NAB constants divided by 2
                    t3 = t3 / 2
                    t4 = t4_7 / 2
                    # - CCIR_15 constant not altered
                    t2 = t2_15
                    # Filter coefficients
                    a = [t2 * t3, t2 + t3, 1]
                    b = [t3 * t4, t3, 0]
                    # Plot information
                    case = 6
                # Case 7
                else:  # SPEED_R == 3.75
                    FS = 4 * FS  # Quadrupling the sampling frequency
                    # Correction filter: NABw3.75_mod + CCIRr15
                    # - NAB constants divided by 4
                    t3 = t3 / 4
                    t4 = t4_3 / 4
                    # - CCIR_15 constant not altered
                    t2 = t2_15
                    # Filter coefficients
                    a = [t2 * t3, t2 + t3, 1]
                    b = [t3 * t4, t3, 0]
                    # Plot information
                    case = 7
            else:  # STANDARD_R == 'CCIR'
                # Case 19
                if SPEED_R == 30:
                    FS = FS / 2  # Halving the sampling frequency
                    # Plot information
                    case = 19
                # Case 33
                elif SPEED_R == 15:
                    print('Reference case: 33')
                    print(CC.GREEN + 'Nothing to do!' + CC.END)
                    quit(os.EX_OK)
                # Case 20
                else:  # SPEED_R == 7.5
                    FS = 2 * FS  # Doubling the sampling frequency
                    # Plot information
                    case = 20
        else:  # SPEED_W == 7.5
            if STANDARD_R == 'NAB':
                # Case 10
                if SPEED_R == 15:
                    FS = FS / 2  # Halving the sampling frequency
                    # Correction filter: NABw15_mod + CCIRr7.5
                    # - NAB constants multiplied by 2
                    t3 = t3 * 2
                    t4 = t4_15 * 2
                    # - CCIR_7.5 constant not altered
                    t2 = t2_7
                    # Filter coefficients
                    a = [t2 * t3, t2 + t3, 1]
                    b = [t3 * t4, t3, 0]
                    # Plot information
                    case = 10
                # Case 30
                elif SPEED_R == 7.5:
                    # No speed change
                    # Correction filter: NABw7.5 + CCIRr7.5
                    # - NAB_7.5 constant not altered
                    t4 = t4_7
                    # - CCIR_7.5 constant not altered
                    t2 = t2_7
                    # Filter coefficients
                    a = [t2 * t3, t2 + t3, 1]
                    b = [t3 * t4, t3, 0]
                    # Plot information
                    case = 30
                # Case 11
                else:  # SPEED_R == 3.75
                    FS = 2 * FS  # Doubling the sampling frequency
                    # Correction filter: NABw3.75_mod + CCIRr7.5
                    # - NAB constants divided by 2
                    t3 = t3 / 2
                    t4 = t4_3 / 2
                    # - CCIR_7.5 constant not altered
                    t2 = t2_7
                    # Filter coefficients
                    a = [t2 * t3, t2 + t3, 1]
                    b = [t3 * t4, t3, 0]
                    # Plot information
                    case = 11
            else:  # STANDARD_R == 'CCIR'
                # Case 23
                if SPEED_R == 30:
                    FS = FS / 4  # Quartering the sampling frequency
                    # Plot information
                    case = 23
                # Case 24
                elif SPEED_R == 15:
                    FS = FS / 2  # Halving the sampling frequency
                    # Plot information
                    case = 24
                # Case 35
                else:  # SPEED_R == 7.5
                    print('Reference case: 35')
                    print(CC.GREEN + 'Nothing to do!' + CC.END)
                    quit(os.EX_OK)
    else:  # STANDARD_W == 'NAB'
        if SPEED_W == 15:
            if STANDARD_R == 'NAB':
                # Case 32
                if SPEED_R == 15:
                    print('Reference case: 32')
                    print(CC.GREEN + 'Nothing to do!' + CC.END)
                    quit(os.EX_OK)
                # Case 17
                elif SPEED_R == 7.5:
                    FS = 2 * FS  # Doubling the sampling frequency
                    # Correction filter: NABw7.5_mod + NABr15
                    # - NABw constants divided by 2
                    t3_mod = t3 / 2
                    t4_mod = t4_7 / 2
                    # - NABr constant not altered
                    t4 = t4_15
                    # Filter coefficients
                    a = [t3 * t3_mod * t4, t3 * (t3_mod + t4), t3]
                    b = [t3 * t3_mod * t4_mod, t3_mod * (t3 + t4_mod), t3_mod]
                    # Plot information
                    case = 17
                # Case 18
                else:  # SPEED_R == 3.75
                    FS = 4 * FS  # Quadrupling the sampling frequency
                    # Correction filter: NABw3.75_mod + NABr15
                    # - NAB constants divided by 4
                    t3_mod = t3 / 4
                    t4_mod = t4_3 / 4
                    # - NABr constant not altered
                    t4 = t4_15
                    # Filter coefficients
                    a = [t3 * t3_mod * t4, t3 * (t3_mod + t4), t3]
                    b = [t3 * t3_mod * t4_mod, t3_mod * (t3 + t4_mod), t3_mod]
                    # Plot information
                    case = 18
            else:  # STANDARD_R == 'CCIR'
                # Case 4
                if SPEED_R == 30:
                    FS = FS / 2  # Halving the sampling frequency
                    # Correction filter: CCIRw30_mod + NABr15
                    # - CCIR_30 constant multiplied by 2
                    t2 = t2_30 * 2
                    # - NAB_15 constant not altered
                    t4 = t4_15
                    # Filter coefficients
                    a = [t3 * t4, t3, 0]
                    b = [t2 * t3, t2 + t3, 1]
                    # Plot information
                    case = 4
                # Case 27
                elif SPEED_R == 15:
                    # No speed change
                    # Correction filter: CCIRw15 + NABr15
                    # - CCIR_15 constant not altered
                    t2 = t2_15
                    # - NAB_15 constant not altered
                    t4 = t4_15
                    # Filter coefficients
                    a = [t3 * t4, t3, 0]
                    b = [t2 * t3, t2 + t3, 1]
                    # Plot information
                    case = 27
                # Case 5
                else:  # SPEED_R == 7.5
                    FS = FS * 2  # Doubling the sampling frequency
                    # Correction filter: CCIRw7.5_mod + NABr15
                    # - CCIR_7.5 constant divided by 2
                    t2 = t2_7 / 2
                    # - NAB_15 constant not altered
                    t4 = t4_15
                    # Filter coefficients
                    a = [t3 * t4, t3, 0]
                    b = [t2 * t3, t2 + t3, 1]
                    # Plot information
                    case = 5
        elif SPEED_W == 7.5:
            if STANDARD_R == 'NAB':
                # Case 21
                if SPEED_R == 15:
                    FS = FS / 2  # Halving the sampling frequency
                    # Correction filter: NABw15_mod + NABr7.5
                    # - NABw constants multiplied by 2
                    t3_mod = t3 * 2
                    t4_mod = t4_15 * 2
                    # - NABr constant not altered
                    t4 = t4_7
                    # Filter coefficients
                    a = [t3 * t3_mod * t4, t3 * (t3_mod + t4), t3]
                    b = [t3 * t3_mod * t4_mod, t3_mod * (t3 + t4_mod), t3_mod]
                    # Plot information
                    case = 21
                # Case 34
                elif SPEED_R == 7.5:
                    print('Reference case: 34')
                    print(CC.GREEN + 'Nothing to do!' + CC.END)
                    quit(os.EX_OK)
                # Case 22
                else:  # SPEED_R == 3.75
                    FS = 2 * FS  # Doubling the sampling frequency
                    # Correction filter: NABw3.75_mod + NABr7.5
                    # - NABw constants divided by 2
                    t3_mod = t3 / 2
                    t4_mod = t4_3 / 2
                    # - NABr constant not altered
                    t4 = t4_7
                    # Filter coefficients
                    a = [t3 * t3_mod * t4, t3 * (t3_mod + t4), t3]
                    b = [t3 * t3_mod * t4_mod, t3_mod * (t3 + t4_mod), t3_mod]
                    # Plot information
                    case = 22
            else:  # STANDARD_R == 'CCIR'
                # Case 8
                if SPEED_R == 30:
                    FS = FS / 4  # Quartering the sampling frequency
                    # Correction filter: CCIRw30_mod + NABr7.5
                    # - CCIR_30 constant multiplied by 4
                    t2 = t2_30 * 4
                    # - NAB_7.5 constant not altered
                    t4 = t4_7
                    # Filter coefficients
                    a = [t3 * t4, t3, 0]
                    b = [t2 * t3, t2 + t3, 1]
                    # Plot information
                    case = 8
                # Case 9
                elif SPEED_R == 15:
                    FS = FS / 2  # Halving the sampling frequency
                    # Correction filter: CCIRw15_mod + NABr7.5
                    # - CCIR_15 constant multiplied by 2
                    t2 = t2_15 * 2
                    # - NAB_7.5 constant not altered
                    t4 = t4_7
                    # Filter coefficients
                    a = [t3 * t4, t3, 0]
                    b = [t2 * t3, t2 + t3, 1]
                    # Plot information
                    case = 9
                # Case 29
                else:  # SPEED_R == 7.5
                    # No speed change
                    # Correction filter: CCIRw7.5 + NABr7.5
                    # - CCIR_7.5 constant not altered
                    t2 = t2_7
                    # - NAB_7.5 constant not altered
                    t4 = t4_7
                    # Filter coefficients
                    a = [t3 * t4, t3, 0]
                    b = [t2 * t3, t2 + t3, 1]
                    # Plot information
                    case = 29
        else:  # SPEED_W == 3.75
            if STANDARD_R == 'NAB':
                # Case 25
                if SPEED_R == 15:
                    FS = FS / 4  # Quartering the sampling frequency
                    # Correction filter: NABw15_mod + NABr3.75
                    # - NAB constants multiplied by 4
                    t3_mod = t3 * 4
                    t4_mod = t4_15 * 4
                    # - NABr constant not altered
                    t4 = t4_3
                    # Filter coefficients
                    a = [t3 * t3_mod * t4, t3 * (t3_mod + t4), t3]
                    b = [t3 * t3_mod * t4_mod, t3_mod * (t3 + t4_mod), t3_mod]
                    # Plot information
                    case = 25
                # Case 26
                elif SPEED_R == 7.5:
                    FS = FS / 2  # Halving the sampling frequency
                    # Correction filter: NABw7.5_mod + NABr3.75
                    # - NAB constants multiplied by 2
                    t3_mod = t3 * 2
                    t4_mod = t4_7 * 2
                    # - NABr constant not altered
                    t4 = t4_3
                    # Filter coefficients
                    a = [t3 * t3_mod * t4, t3 * (t3_mod + t4), t3]
                    b = [t3 * t3_mod * t4_mod, t3_mod * (t3 + t4_mod), t3_mod]
                    # Plot information
                    case = 26
                # Case 36
                else:  # SPEED_R == 3.75
                    print('Reference case: 36')
                    print(CC.GREEN + 'Nothing to do!' + CC.END)
                    quit(os.EX_OK)
            else:  # STANDARD_R == 'CCIR'
                # Case 12
                if SPEED_R == 30:
                    FS = FS / 8  # Dividing by 8 the sampling frequency
                    # Correction filter: CCIRw30_mod + NABr3.75
                    # - CCIR_30 constant multiplied by 8
                    t2 = t2_30 * 8
                    # - NAB_3.75 constant not altered
                    t4 = t4_3
                    # Filter coefficients
                    a = [t3 * t4, t3, 0]
                    b = [t2 * t3, t2 + t3, 1]
                    # Plot information
                    case = 12
                # Case 13
                elif SPEED_R == 15:
                    FS = FS / 4  # Quartering the sampling frequency
                    # Correction filter: CCIRw15_mod + NABr3.75
                    # - CCIR_15 constant multiplied by 4
                    t2 = t2_15 * 4
                    # - NAB_3.75 constant not altered
                    t4 = t4_3
                    # Filter coefficients
                    a = [t3 * t4, t3, 0]
                    b = [t2 * t3, t2 + t3, 1]
                    # Plot information
                    case = 13
                # Case 14
                else:  # SPEED_R == 7.5
                    FS = FS / 2  # Halving the sampling frequency
                    # Correction filter: CCIRw7.5_mod + NABr3.75
                    # - CCIR_7.5 constant multiplied by 2
                    t2 = t2_7 * 2
                    # - NAB_3.75 constant not altered
                    t4 = t4_3
                    # Filter coefficients
                    a = [t3 * t4, t3, 0]
                    b = [t2 * t3, t2 + t3, 1]
                    # Plot information
                    case = 14

    # Casting FS to int because wavfile.write() is stupid
    FS = round(FS)
    print('Reference case: ' + str(case))
    print('Operational sampling frequency: ' + str(FS) + ' Hz.')

    # Correction filter

    # Not all cases present a correction filter!
    if len(a) != 0:
        # Analog transfer function
        H_a = TransferFunction(a, b)
        # Analog frequency vector
        w_a = np.logspace(np.log10(1), np.log10(FS * np.pi), 5000)

        if PLOTS:
            # Analog filter frequency response
            w_t, h_t = freqs(a, b, worN=w_a)
            # Plot analog graph
            # - Magnitude
            plt.subplot(2, 1, 1)
            plt.semilogx(w_t / (2 * np.pi), 20 * np.log10(abs(h_t)))
            plt.xlim([1, 24000])
            plt.xlabel('Frequency')
            plt.ylim([-40, 40])
            plt.ylabel('Amplitude response [dB]')
            plt.grid(True)
            # - Phase
            plt.subplot(2, 1, 2)
            plt.semilogx(w_t / (2 * np.pi), np.angle(h_t) * 180 / np.pi)
            plt.xlim([1, 24000])
            plt.xlabel('Frequency')
            plt.ylabel('Phase [deg]')
            plt.grid(True)

        # Digital transfer function through bilinear digitisation
        H_d = c2d(H_a, 1/FS, 'bilinear')
        num_d = H_d.num[0][0]  # Inspect Hd.num to see why [0][0] is needed...
        den_d = H_d.den[0][0]  # Same story here
        # Digital frequency vector
        w_d = np.logspace(np.log10(1), np.log10(FS / 2), 5000)

        if PLOTS:
            # Digital filter frequency response
            w_n, h_n = freqz(num_d, den_d, worN=w_d, fs=FS)
            # Plot digital graph
            # - Magnitude
            plt.subplot(2, 1, 1)
            plt.semilogx(w_n, 20 * np.log10(abs(h_n)), '--')
            plt.legend(['Analog', 'Bilinear'])
            # - Phase
            plt.subplot(2, 1, 2)
            plt.semilogx(w_n, np.angle(h_n) * 180 / np.pi, '--')
            plt.legend(['Analog', 'Bilinear'])

        # Pole check

        # New pole frequency
        pole_frequency = 2
        # Move to zero-pole representation
        z, p, k = tf2zpk(a, b)
        # Check if the function presents a pole at 0 Hz
        for i in range(len(p)):
            if p[i] == 0:
                # Replace pole
                p[i] = -pole_frequency * 2 * np.pi
                print('\n' + CC.PURPLE + 'Pole at 0 Hz replaced!' + CC.END)
                # Back to transfer function representation
                ap, bp = zpk2tf(z, p, k)

                # Analog transfer function
                Hp_a = TransferFunction(ap, bp)

                if PLOTS:
                    # Analog filter frequency response
                    wp_t, hp_t = freqs(ap, bp, worN=w_a)
                    # Plot analog graph
                    # - Magnitude
                    plt.subplot(2, 1, 1)
                    plt.semilogx(wp_t / (2 * np.pi), 20 * np.log10(abs(hp_t)))
                    # - Phase
                    plt.subplot(2, 1, 2)
                    plt.semilogx(wp_t / (2 * np.pi), np.angle(hp_t) * 180 / np.pi)

                # Digital transfer function through bilinear digitisation
                Hp_d = c2d(Hp_a, 1 / FS, 'bilinear')
                num_d = Hp_d.num[0][0]
                den_d = Hp_d.den[0][0]

                if PLOTS:
                    # Digital filter frequency response
                    wp_n, hp_n = freqz(num_d, den_d, worN=w_d, fs=FS)
                    # Plot digital graph
                    # - Magnitude
                    plt.subplot(2, 1, 1)
                    plt.semilogx(wp_n, 20 * np.log10(abs(hp_n)), '--')
                    plt.legend(['Analog', 'Bilinear', 'Pole - Analog', 'Pole - Digital'])
                    # - Phase
                    plt.subplot(2, 1, 2)
                    plt.semilogx(wp_n, np.angle(hp_n) * 180 / np.pi, '--')
                    plt.legend(['Analog', 'Bilinear', 'Pole - Analog', 'Pole - Digital'])

        if PLOTS:
            plt.show()

        if len(PRESERVATION_FILE_NAME) > 0:
            print('\nFiltering Preservation Audio File...')
            # Filter Preservation Audio File
            raf = lfilter(num_d, den_d, paf, axis=0)
            # Again, wavfile.write() is stupid, and you must cast everything to not destroy your ears...
            raf = np.rint(raf).astype(paf.dtype)

            # Save Restored Audio File
            save_file(raf)

    else:
        # Save Restored Audio File
        save_file(paf)

    # End
    print(CC.GREEN + CC.BOLD + "Success!" + CC.END + '\n')