AIMs_files.py 6.23 KB
Newer Older
Carldst's avatar
Carldst committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

import UCHIDA
import time
from utils import *
from Attacks import *

#####Changement de niveau AIMs doit etre quelque chose qui possède des ports
class AIM():
    model=None
    parameters=None
    testingDataset=None
    trainingDataset=None

    output_0=None

    def trainAIM(self, parameters, trainingDataset):
        model = tv.models.vgg16()
        model.classifier = nn.Linear(25088, 10)
        model.load_state_dict(parameters["model_state_dict"])
        batch_size = 128
        while batch_size > 0:
            try:
                trainloader = torch.utils.data.DataLoader(trainingDataset, batch_size=batch_size, shuffle=False,
                                                         num_workers=2)
            except:
                batch_size = int(batch_size / 2)
        criterion = nn.CrossEntropyLoss()
        learning_rate, momentum, weight_decay = 0.01, .9, 5e-4
        optimizer = optim.SGD([
            {'params': model.parameters()}
        ], lr=learning_rate, momentum=momentum, weight_decay=weight_decay)
        model.train()
        model.to(device)
        for epoch in range(10):
            for i, data in enumerate(trainloader, 0):
                # split data into the image and its label
                inputs, labels = data
                inputs = inputs.to(device)
                labels = labels.to(device)
                if inputs.size()[1] == 1:
                    inputs.squeeze_(1)
                    inputs = torch.stack([inputs, inputs, inputs], 1)
                # initialise the optimiser
                optimizer.zero_grad()

                # forward
                outputs = model(inputs)
                # backward
                loss= criterion(outputs, labels)
                # watermark
                loss.backward()
                # update the optimizer
                optimizer.step()
        return model

    def funcAIM(self, model, parameters, testingDataset):
        '''
        return the performance of the model in the testing dataset
        :param parameters: parameter of the network
        :param testingdataset: testing data
        :return:
        '''
        model.load_state_dict(parameters["model_state_dict"])
        batch_size=128
        while batch_size>0:
            try :
                testloader=torch.utils.data.DataLoader(testingDataset, batch_size=batch_size, shuffle=False,num_workers=2)
                return self.testingAIM(model,testloader)
            except:
                batch_size=int(batch_size/2)

    def testingAIM(self,AIM,testloader):
        correct = 0
        total = 0
        AIM.to(device)
        AIM.eval()
        # torch.no_grad do not train the network
        with torch.no_grad():
            for data in testloader:
                inputs, labels = data
                if inputs.size()[1] == 1:
                    inputs.squeeze_(1)
                    inputs = torch.stack([inputs, inputs, inputs], 1)
                inputs = inputs.to(device)
                labels = labels.to(device)
                outputs = AIM(inputs)
                if len(outputs) == 2: outputs, _ = outputs
                _, predicted = torch.max(outputs, 1)
                total += labels.size(0)
                correct += (predicted == labels).sum()
        return 100 - (100 * float(correct) / total)

    def run(self):
        self.output_0=self.funcAIM(self.model, self.parameters, self.testingDataset)

class WatermarkEmbedder():
    AIM=None
    ##
    output_0 = None

    def funcWatermarkEmbedder(self,model):
        ### differentiate this function based on trainloader none or not
        model.to(device)
        #### to be adapted by
        tools = UCHIDA.Uchi_tools()
        weight_name = 'features.19.weight'
        T = 64
        watermark = torch.tensor(np.random.choice([0, 1], size=(T), p=[1. / 3, 2. / 3]), device=device)
        watermarking_dict = {'lambd': 0.1, 'weight_name': weight_name, 'watermark': watermark, "types": 1}
        if watermarking_dict["types"] == 1:
            trainset, testset, inference_transform = CIFAR10_dataset()
            # hyperparameter of training
            num_epochs = 25
            batch_size = 128
            tools.init(model,watermarking_dict)
            trainloader, testloader = dataloader(trainset, testset, batch_size)
            criterion = nn.CrossEntropyLoss()
            learning_rate, momentum, weight_decay = 0.01, .9, 5e-4
            optimizer = optim.SGD([
                {'params': model.parameters()}
            ], lr=learning_rate, momentum=momentum, weight_decay=weight_decay)
            model.train()
            epoch = 0
            print("Launching injection.....")
            while epoch < num_epochs:
                print('doing epoch', str(epoch + 1), ".....")
                loss, loss_nn, loss_w = tools.Embedder_one_step(model, trainloader, optimizer, criterion,
                                                                watermarking_dict)

                loss = (loss * batch_size / len(trainloader.dataset))
                loss_nn = (loss_nn * batch_size / len(trainloader.dataset))
                loss_w = (loss_w * batch_size / len(trainloader.dataset))
                print(' loss  : %.5f   - loss_wm: %.5f, loss_nn: %.5f  ' % (loss, loss_w, loss_nn))

                epoch += 1
        else:
            tools.init(model,watermarking_dict)
            model = tools.Embedder(model, watermarking_dict)

        ## save the chekcpoints
        np.save('watermarking_dict.npy', watermarking_dict)
        torch.save({
            'model_state_dict': model.state_dict(),
        }, 'weights')
        ## load (checkpoint)
        checkpoints=torch.load('weights', map_location=torch.device('cpu'))
        return checkpoints

    def run(self):
        self.output_0=self.funcWatermarkEmbedder(self.AIM)

class Comparator():
    unwatermarked=None
    watermarked=None
    testingDataset = None
    ##
    output_0=None

    def funcComparator(self,unwatermarked,watermarked,testingDataset):
        undertestAIM=AIM()

        res_wm=undertestAIM.funcAIM(watermarked,testingDataset)
        res_unwm=undertestAIM.funcAIM(unwatermarked,testingDataset)
        return np.abs(res_unwm-res_wm)/res_wm, res_wm

    def run(self):
        self.output_0=self.funcComparator(self.unwatermarked, self.watermarked,self.testingDataset)