Commit a97b0754 authored by valentini's avatar valentini
Browse files

Carica un nuovo file

parent 0d459ba8
import os
import yaml
import torch
from torch.utils.data import DataLoader, random_split
from torch import nn, optim
from dataloader import SRDataset
from settings import Settings, load_settings
from model.dummy_sr_model import DummySRModel # Use your model insted of the Dummy One
# Load settings from config.yaml
config_path = os.path.join(os.path.dirname(__file__), '../config.yaml')
settings = load_settings(config_path)
# Create dataset
full_dataset = SRDataset(settings)
# Split into train and validation (80/20)
dataset_size = len(full_dataset)
val_size = int(0.2 * dataset_size)
train_size = dataset_size - val_size
train_dataset, val_dataset = random_split(full_dataset, [train_size, val_size])
# Create DataLoaders using settings.batch_size
train_loader = DataLoader(train_dataset, batch_size=settings.batch_size, shuffle=True, num_workers=0)
val_loader = DataLoader(val_dataset, batch_size=settings.batch_size, shuffle=False, num_workers=0)
# Determine input/output channels
if settings.luminance_only:
in_channels = 1 if not settings.clone_luminance_as_rgb else 3
else:
in_channels = 3
model = DummySRModel(in_channels=in_channels, out_channels=in_channels, super_resolution=settings.scaling)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = model.to(device)
# Loss and optimizer
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=1e-3)
# Scheduler configuration
use_plateau_scheduler = getattr(settings, 'use_plateau_scheduler', False)
step_size = getattr(settings, 'lr_step_size', 10)
gamma = getattr(settings, 'lr_gamma', 0.5)
if use_plateau_scheduler:
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=gamma, patience=5, verbose=True)
else:
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=step_size, gamma=gamma, verbose=True)
epochs = 2 # For demonstration
best_val_mse = float('inf')
for epoch in range(epochs):
model.train()
running_loss = 0.0
for batch in train_loader:
low_sr = batch['low_sr'].to(device)
high_sr = batch['high_sr'].to(device)
optimizer.zero_grad()
output = model(low_sr)
loss = criterion(output, high_sr)
loss.backward()
optimizer.step()
running_loss += loss.item() * low_sr.size(0)
avg_loss = running_loss / len(train_loader.dataset)
print(f"Epoch {epoch+1}/{epochs}, Train Loss: {avg_loss:.4f}")
# Validation
model.eval()
val_loss = 0.0
with torch.no_grad():
for batch in val_loader:
low_sr = batch['low_sr'].to(device)
high_sr = batch['high_sr'].to(device)
output = model(low_sr)
loss = criterion(output, high_sr)
val_loss += loss.item() * low_sr.size(0)
avg_val_loss = val_loss / len(val_loader.dataset)
print(f"Epoch {epoch+1}/{epochs}, Val Loss: {avg_val_loss:.4f}")
# Step scheduler
if use_plateau_scheduler:
scheduler.step(avg_val_loss)
else:
scheduler.step()
print(f"Current learning rate: {optimizer.param_groups[0]['lr']}")
# Save model if best validation MSE
if avg_val_loss < best_val_mse:
best_val_mse = avg_val_loss
torch.save(model.state_dict(), 'best_model.pth')
print(f"Best model saved at epoch {epoch+1} with Val MSE: {best_val_mse:.4f}")
print("Training complete.")
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment