main.py 9.82 KB
Newer Older
valentini's avatar
valentini committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import os
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch_pruning as tp
import numpy as np
import random
from tqdm import tqdm
from ignite.metrics import PSNR
from ignite.metrics import SSIM

# Model Variants
from model.dummy_sr_model import DummySRModel

from utils.ckpt import load_checkpoint
from utils.util import get_luminance as get_luminance_from_rgb
from dataset import RGBDataset, YUVDataset
from utils.trainer import trainFor, testModel, sparsityLearning
from utils.loss import CharbonnierLoss
from torch.nn import MSELoss
from arguments import get_arguments
from pruners import pruner_constructor

def generateRunName(args):
    pruning_steps = args.pruning_steps
    pruning_target_ratio = args.pruning_target_ratio

    # Constract name
    name = f"Pruning(x{args.scale}({pruning_steps}))-RetrainedOn(e{args.epochs}-{args.crop}x{args.crop})"

    return name


def loadModel(args):
    # create the model
    model = DummySRModel(args)
    
    # Load pretrained weights
    if args.weigths:
        model_dict, epoch, mse = load_checkpoint(args.weigths)
        
        if model_dict is None: raise Exception("The ckpt dose not have the model state_dict!")
        model.load_state_dict(model_dict['model'])
    
        # Saving original Model
        ckpt_path = os.path.join(checkpoints_path, 'unpruned_model.pth')
        if not os.path.exists(ckpt_path):
            torch.save({
                'model': model_dict['model'],
            }, ckpt_path)
    
    return model

if __name__ == '__main__':
    args = get_arguments()
    
    print(args)

    # SetUp Random
    torch.manual_seed(args.seed)
    np.random.seed(args.seed)
    random.seed(args.seed)
    
    ### Prepare output Dirs
    params = vars(args)
    params['dataset'] = os.path.basename(os.path.normpath(args.loader))

    run_name, tags = generateRunName(args)
    run_dir = os.path.join(args.runs, run_name)
    print("Outupt Folder root:", run_dir)
    log_metrics_path = os.path.join(run_dir, 'pruning_results.csv')
    original_test_path = os.path.join(run_dir, 'original')
    checkpoints_path = os.path.join(run_dir, 'checkpoints')
    param_file = os.path.join(run_dir, 'params.csv')
    os.makedirs(original_test_path, exist_ok=True)
    os.makedirs(checkpoints_path, exist_ok=True)
    
    pd.DataFrame(params, index=[0]).to_csv(param_file, index=False)
        
    # Load model
    model = loadModel(args)

    # Get Dataset
    if args.loader.lower() == 'div2k_rgb':
        train_loader, val_loader, test_loader = RGBDataset(args)
        loss_function = CharbonnierLoss(args.loss_epsylon)
        get_luminance = get_luminance_from_rgb
    elif args.loader.lower() == 'custom_yuv':
        train_loader, val_loader, test_loader = YUVDataset(args)
        loss_function = MSELoss()
        get_luminance = None
    else: 
        raise Exception("Unsupported dataset")
    
    # Define device
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")    
    model = model.to(device)
    
    # Defining test inputs to evaluate the model performances 
    example_input_sd = torch.randn(1, 3, 964, 540).to(device) # Needed for some pruners
    pruner = pruner_constructor(args, model, torch.randn(1, 3, 10, 10), device)  

    log_metrics = pd.DataFrame()  
    base_macs_sd, base_nparams = tp.utils.count_ops_and_params(model, example_input_sd)
    
    # Eval Original Model on The TestSet
    psnr_pretrain = PSNR(data_range=args.data_range, output_transform=get_luminance, device=device)
    ssim_pretrain = SSIM(data_range=args.data_range, output_transform=get_luminance, device=device)
    
    test_loss, test_table = testModel(
        loader=test_loader, 
        model=model,
        args=args,
        psnr=psnr_pretrain, 
        ssim=ssim_pretrain,
        data_range=args.data_range,
        device=device,
        loss_function=loss_function
    )
    
    prune_iter_metrics = {}
    prune_iter_metrics["pruning_step"] = 0
    prune_iter_metrics["pruning_rateo"] = 0
    prune_iter_metrics["parameters_(M)"] = base_nparams / 1e6
    prune_iter_metrics["inference_SD_HD_flops(G)"] = base_macs_sd / 1e9
    prune_iter_metrics["mse"] = test_loss
    prune_iter_metrics['ssim'] = float(ssim_pretrain.compute())
    prune_iter_metrics['psnr'] = float(psnr_pretrain.compute())
    test_table.to_csv(os.path.join(original_test_path, 'original_test.csv'), index=False)
    test_table.groupby('sequence').mean().reset_index().to_csv(os.path.join(original_test_path, 'original_test_by_sequence.csv'), index=False)
    log_metrics = log_metrics.append(prune_iter_metrics, ignore_index=True)
    log_metrics.to_csv(log_metrics_path, index=False)
    
    # Save depenency graph visualization
    tp.utils.draw_dependency_graph(pruner.DG, save_as=os.path.join(original_test_path, 'draw_dep_graph.png'), title=None)
    tp.utils.draw_groups(pruner.DG, save_as=os.path.join(original_test_path, 'draw_groups.png'), title=None)
    tp.utils.draw_computational_graph(pruner.DG, save_as=os.path.join(original_test_path, 'draw_comp_graph.png'), title=None)
    
    # Save original model structure
    macs_sd, nparams = tp.utils.count_ops_and_params(model, example_input_sd)
    with open(os.path.join(original_test_path, 'model_details.txt'), 'w') as model_details_file:
        model_details_file.write(f"{model}\n")
        wandb.log({"model_description":  f"{model}"})
        model_details_file.write(
            "  Iter %d/%d, Params: %.2f M => %.2f M\n"
            % (0, args.pruning_steps, base_nparams / 1e6, nparams / 1e6)
        )
        model_details_file.write(
            "  Iter %d/%d, MACs SD_Input: %.2f G => %.2f G\n"
            % (0, args.pruning_steps, base_macs_sd / 1e9, macs_sd / 1e9)
        )

    ####################################
    # Pruning Cycles ###################
    ####################################
    training_iter = 0
    for i in tqdm(range(1, args.pruning_steps + 1)):

        step_path = os.path.join(run_dir, 'pruning_iter_{}'.format(i))
        os.makedirs(step_path, exist_ok=True)
        
        # Learning Sparsity (Some pruning techniques require a treaning step to learn the sparsity)
        if args.pruning_method == "growing_reg":
            sparsityLearning(
                model=model,
                pruner=pruner,
                loader=train_loader,
                args=args,
                loss_function = loss_function
            )
            
        # Pruning Step
        pruner.step()
        
        macs_sd, nparams = tp.utils.count_ops_and_params(model, example_input_sd)
        with open(os.path.join(step_path, 'model_details.txt'), 'w') as model_details_file:
            model_details_file.write(f"{model}\n")
            wandb.log({"model_description":  f"{model}"})
            model_details_file.write(
                "  Iter %d/%d, Params: %.2f M => %.2f M\n"
                % (i, args.pruning_steps, base_nparams / 1e6, nparams / 1e6)
            )
            model_details_file.write(
                "  Iter %d/%d, MACs SD_Input: %.2f G => %.2f G\n"
                % (i, args.pruning_steps, base_macs_sd / 1e9, macs_sd / 1e9)
            )

        
        # Model finetuing to recover the loast performacies
        best_model_current_pruning = model # If noting better is found the initial model is the betst
        best_mse_current_pruning = None
        best_optimizer_current_pruning = None
        if args.epochs and args.epochs > 0:
            print("Retraining for recovery!")
            (best_model, best_mse, last_epoch_model, last_epoch_mse, optimizer, run_logs) = trainFor(
                model=model,
                train_dataloader=train_loader,
                val_dataloader=val_loader,
                device=device,
                args=args,
                epochs=args.epochs,
                run_folder=step_path,
                pruner=pruner,
                loss_function=loss_function
            )
            
            model.load_state_dict(best_model.state_dict()) # Load weights of the best model!!
            wandb.log({"train_logs":  wandb.Table(dataframe=run_logs)})
            run_logs.to_csv(os.path.join(step_path, f'traning_log.csv'),index=False) 
            best_model_current_pruning = best_model
            best_mse_current_pruning = best_mse
        
        # Test Best Retrained Model And log results
        prune_iter_metrics = {}
        prune_iter_metrics["pruning_step"] = i
        prune_iter_metrics["pruning_rateo"] = 1 - (nparams / base_nparams)
        prune_iter_metrics["parameters_(M)"] = nparams / 1e6
        prune_iter_metrics["inference_SD_HD_flops(G)"] = macs_sd / 1e9 
        
        psnr_test = PSNR(data_range=args.data_range, device=device)
        ssim_test = SSIM(data_range=args.data_range, device=device)
        test_loss, test_table = testModel(
            loader=test_loader, 
            model=model,
            args=args,
            psnr=psnr_test, 
            ssim=ssim_test,
            data_range=args.data_range,
            device=device,
            loss_function=loss_function
        )
        
        test_table.to_csv(os.path.join(step_path, f'test.csv'),index=False) 
        test_table.groupby('sequence').mean().reset_index().to_csv(os.path.join(step_path, f'test_by_sequence.csv'), index=False)
     
          
        prune_iter_metrics["mse"]= test_loss
        prune_iter_metrics['ssim'] = float(ssim_test.compute())
        prune_iter_metrics['psnr'] = float(psnr_test.compute())
        
        log_metrics = log_metrics.append(prune_iter_metrics, ignore_index=True)
        log_metrics.to_csv(log_metrics_path, index=False)
        
        # Saving the fine tuned (BEST) model
        ckpt_path = os.path.join(checkpoints_path, 'pruned_iteraion_{}.pth'.format(i))
        if not os.path.exists(ckpt_path):
            torch.save({
                'metrics': test_loss,
                'model': tp.state_dict(best_model_current_pruning),
            }, ckpt_path)