YUVDataset.py 22.9 KB
Newer Older
valentini's avatar
valentini committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
# Prepare the dataset for the training phase

import torch.utils.data as data
import torchvision.transforms as T
import yuvio
import glob
import glob2
import torch
import logging
import random
import numpy as np
import cv2
import re
import os.path as path
from utils.transforms import paralellCrop
from PIL import Image

ORIGNAL_BASE_PATH = '/trinity/home/mangelini/data/datasets/OrignialRaw/Original_Sequencies'


def getOriginalSequencePathFromSequenceName(name):
    sequence_paths = {
        'BasketballDrive': 'BasketballDrive_1920x1080_50.yuv',
        'FoodMarket4': 'FoodMarket4_3840x2160_60fps_10bit_420.yuv',
        'BQTerrace': 'BQTerrace_1920x1080_60.yuv',
        'MarketPlace': 'MarketPlace_1920x1080_60fps_10bit_420.yuv',
        'Cactus': 'Cactus_1920x1080_50.yuv',
        'ParkRunning3': 'ParkRunning3_3840x2160_50fps_10bit_420.yuv',
        'Campfire': 'Campfire_3840x2160_30fps_10bit_bt709_420_videoRange.yuv',
        'RitualDance': 'RitualDance_1920x1080_60fps_10bit_420.yuv',
        'CatRobot': 'CatRobot_3840x2160_60fps_10bit_420_jvet.yuv',
        'Tango2': 'Tango2_3840x2160_60fps_10bit_420.yuv',
        'DaylightRoad2': 'DaylightRoad2_3840x2160_60fps_10bit_420.yuv',
    }

    return f'{ORIGNAL_BASE_PATH}/{sequence_paths[name]}'

def getDepthFromFormat(format):
    if format == 'gray': return 8
    if format =='gray10le': return 10
    if format =='gray10be': return 10
    if format =='gray16le': return 16
    if format =='gray16be': return 16
    if format =='gray9le': return 9
    if format =='gray9be': return 9
    if format =='gray12le': return 12
    if format =='gray12be': return 12
    if format =='gray14le': return 14
    if format =='gray14be': return 14
    if format =='nv12': return 8
    if format =='v210': return 10
    if format =='yuv420p': return 8
    if format =='yuv420p10le': return 10
    if format =='yuv420p10be': return 10
    if format =='yuv420p16le': return 16
    if format =='yuv420p16be': return 16
    if format =='yuv420p9le': return 9
    if format =='yuv420p9be': return 9
    if format =='yuv420p12le': return 12
    if format =='yuv420p12be': return 12
    if format =='yuv420p14le': return 14
    if format =='yuv420p14be': return 14
    if format =='yuv422p': return 8
    if format =='yuv422p10le': return 10
    if format =='yuv422p10be': return 10
    if format =='yuv422p16le': return 16
    if format =='yuv422p16be': return 16
    if format =='yuv422p9le': return 9
    if format =='yuv422p9be': return 9
    if format =='yuv422p12le': return 12
    if format =='yuv422p12be': return 12
    if format =='yuv422p14le': return 14
    if format =='yuv422p14be': return 14
    if format =='yuv444p': return 8
    if format =='yuv444p10le': return 10
    if format =='yuv444p10be': return 10
    if format =='yuv444p16le': return 16
    if format =='yuv444p16be': return 16
    if format =='yuv444p9le': return 9
    if format =='yuv444p9be': return 9
    if format =='yuv444p12le': return 12
    if format =='yuv444p12be': return 12
    if format =='yuv444p14le': return 14
    if format =='yuv444p14be': return 14
    if format =='yuyv422': return 8
    if format =='uyvy422': return 8
    if format =='yvyu422': return 8
    return 0

def extract_max_from_bitsize(bitsize):
    #find nearest 2 mutiple
    size = 2
    while size < bitsize: size *= 2

    return ((2 ** size) - 1)

def is_image_file(filename):
    return any(filename.endswith(extension) for extension in [".png", ".jpg", ".jpeg"])


def load_img(filepath):
    img = Image.open(filepath).convert('YCbCr')
    y, _, _ = img.split()
    return y

def frame_to_tensor(input_image):
    img_array = np.asarray(input_image).copy().astype(np.float)
    img_tensor = torch.tensor(img_array, dtype=torch.float32).permute((2, 1, 0))
    return img_tensor

def yuv_to_tensor(input_image):
    img_array = np.asarray(input_image).copy().astype(np.float)
    img_tensor = torch.tensor(img_array, dtype=torch.float32).permute((0, 2, 1))
    return img_tensor

# support only 444
def load_yuv_img(path, bitsFormart='uint8', w=1920, h=1080) :
    # Read entire file into YUV
    YUV = np.fromfile(path, dtype=bitsFormart)
    
    # return the image as a frame of w*h
    return YUV.reshape(h, w, 3)

def getContainerType(depth):
    return 'uint{}'.format(depth)

class DatasetFromFolderYUV(data.Dataset):
    def __init__(self, low_res_folder, high_res_folder, size, scale, 
        yuvFormat='yuv444p10le', take_channels=3,transform=None, limit=None, return_names=False, filter_only=None, y_only=False, 
        prefix_low_res=None, low_res_filter=None, prefix_high_res=None, high_res_filter=None, normalize=False, random_frame=False, seed= 888):
        super(DatasetFromFolderYUV, self).__init__()
        self.transform = transform
        self.return_names = return_names
        self.width = 128
        self.heigth = 128
        self.yuvFormat = yuvFormat
        self.depth = getDepthFromFormat(self.yuvFormat)
        self.bucketSize = min([x for x in [8, 16, 32, 64, 128] if x > self.depth])
        self.yOnly = y_only
        self.takeChannels = max(min(take_channels,1), 3)
        self.scale = int(scale)
        self.normalize = normalize
        self.random_frame = random_frame
        self.random = np.random.RandomState(seed)
        
        self.low_res_folder = low_res_folder
        self.high_res_folder = high_res_folder

        self.prefix_low_res = prefix_low_res
        self.prefix_high_res = prefix_high_res

        self.low_res_filter = low_res_filter
        self.high_res_filter = high_res_filter

        self.low_res_filenames = glob.glob("{}/**/*.yuv".format(low_res_folder), recursive=True)
        
        if filter_only:
            self.low_res_filenames = [x for x in self.low_res_filenames if filter_only in x]

        #self.low_res_filenames = self._removeBroken()

        if limit :
            self.low_res_filenames = self.low_res_filenames[:limit]

    def _getMax(self):
        return (2 ** self.depth) - 1

    def _removeBroken(self):
        not_broken = []
        for input_path in self.low_res_filenames:
            try:
                self.getYUV(input_path, 1)
                target_path = input_path.replace(self.prefix_low_res, self.prefix_high_res).replace(self.low_res_folder, self.high_res_folder).replace('-qp22', '')
                target_path = self.removeClasses(target_path)
                target_path = target_path.replace(f'1920x1088', f'3840x2176') # HD-4K
                target_path = target_path.replace(f'960x544', f'1920x1088') # SD-HD
                self.getYUV(target_path, self.scale)
                not_broken += input_path
            except:
                logging.warning(f'Skipping ({input_path}) impossiple to find HD counterpart of broken data')
        return not_broken

    def getDataRange(self):
        if self.normalize: 
            return 1.0
        return self._getMax()

    def removeClasses(self, text):

        sliced = text.split('/')
        if not 'bvi-dvc' in text: return text
        elif '1920x1088' in text:
            sliced[-1] = sliced[-1].replace("B", "A", 1)
            sliced[-2] = sliced[-2].replace("B", "A", 1)
        else:
            sliced[-1] = sliced[-1].replace("C", "B", 1)
            sliced[-2] = sliced[-2].replace("C", "B", 1)
        return '/'.join(sliced)
    
    def swapFpsDepth(self, text):
        if not 'ultravideo' in text or "3840x2176" in text: return text

        sliced = text.split('/')

        tmpSlice = sliced[-1].split("_")
        tmp = tmpSlice[-2]
        tmpSlice[-2] = tmpSlice[-3]
        tmpSlice[-3] = tmp
        sliced[-1] = "_".join(tmpSlice)
        
        tmpSlice = sliced[-2].split("_")
        tmp = tmpSlice[-1]
        tmpSlice[-1] = tmpSlice[-2]
        tmpSlice[-2] = tmp
        sliced[-2] = "_".join(tmpSlice)

        return '/'.join(sliced)

    def getYUV(self, path, scale):
        input = yuvio.imread(path, self.width*scale, self.heigth*scale, self.yuvFormat)
        
        Y,U,V = input.split()
        if self.yOnly:
            input = np.stack([Y,Y,Y])
        else:
            input = np.stack([Y,U,V])
        # input = np.fromfile(path, dtype=np.uint16)
        # input = input[0:(self.heigth*scale) * (self.width*scale)].reshape(self.heigth*scale, self.width*scale)
        # input = np.stack([input,input,input])

        if self.yOnly:
            return input[0:self.takeChannels]

        return input

    def getTargetPath(self, in_path):
        target_path = in_path.replace(self.prefix_low_res, self.prefix_high_res).replace(self.low_res_folder, self.high_res_folder).replace('-qp22', '')
        target_path = target_path.replace(f'1920x1088', f'3840x2176') # HD-4K
        target_path = target_path.replace(f'960x544', f'1920x1088') # SD-HD
        if not path.exists(target_path): target_path = self.removeClasses(target_path)
        if not path.exists(target_path): target_path = self.swapFpsDepth(target_path)
        return target_path

    def __getitem__(self, index):
        input_path = self.low_res_filenames[index]
        input = self.getYUV(input_path, 1)

        target_path = self.getTargetPath(input_path)
        target = self.getYUV(target_path, self.scale)

        # Convert yuv in pytorch shape
        input = yuv_to_tensor(input)
        target = yuv_to_tensor(target)

        # Normalize
        input = input.mul(255/1023)
        target = target.mul(255/1023)

        if self.transform:
            seed = self.random.randint(2147483647)  # make a seed with numpy generator
            random.seed(seed)  # apply this seed to img tranfsorms
            torch.manual_seed(seed)  # needed for torchvision 0.7
            input = self.transform(input)
            random.seed(seed)  # Force same transform for the target
            torch.manual_seed(seed)  # Force same transform for the target
            target = self.transform(target)

        if self.return_names:
            return (input_path, input), (target_path, target)

        return (input, target)

    def __len__(self):
        return len(self.low_res_filenames)

class DatasetFromYUVSequence(data.Dataset):
    def __init__(self, low_res_folder, high_res_folder, size, scale, 
        yuvFormat='yuv444p10le',  transform=None, limit=None, return_names=False, filter_only=None, y_only=False, 
        prefix_low_res=None, prefix_high_res=None, random_frame=False, crop=None, seed= 888):
        super(DatasetFromYUVSequence, self).__init__()
        self.transform = transform
        self.return_names = return_names
        self.width = int(size.split("x")[0])
        self.heigth = int(size.split("x")[1])
        self.yuvFormat = yuvFormat
        self.depth = getDepthFromFormat(self.yuvFormat)
        self.bucketSize = min([x for x in [8, 16, 32, 64, 128] if x > self.depth])
        self.yOnly = y_only
        self.scale = int(scale)
        self.random_frame = random_frame
        self.crop = int(crop) if crop else -1
        self.random = np.random.RandomState(seed=seed)
        
        self.low_res_folder = low_res_folder
        self.high_res_folder = high_res_folder

        self.prefix_low_res = prefix_low_res
        self.prefix_high_res = prefix_high_res

        self.low_res_filenames = glob2.glob("{}/**/*.yuv".format(low_res_folder))
        if filter_only:
            self.low_res_filenames = [x for x in self.low_res_filenames if filter_only in x]
        self.low_res_filenames = [x for x in self.low_res_filenames if size in x]
        self.low_res_filenames = self.removeBrokenPairs()

        if limit :
            self.low_res_filenames = self.low_res_filenames[:limit]

    def _getMax(self):
        return (2 ** self.depth) - 1

    def getDataRange(self):
        return 255

    def loadSequence(self, path_img, scale):
        return yuvio.mimread(path_img, self.width*scale, self.heigth*scale, self.yuvFormat)
    
    def toNumpy(self, yuvIOimg):
        Y, U, V = yuvIOimg.split()
        if self.yOnly: return np.stack([Y,Y,Y])
        else: return  np.stack([Y,U,V])

    def prepare(self, data, seed):
        data = yuv_to_tensor(data)

        if self.transform:
            random.seed(seed)  # apply this seed to img tranfsorms
            torch.manual_seed(seed)  # needed for torchvision 0.7
            data = self.transform(data)
                
        # Normalize for transfer learning
        data = data.mul(255/1023)

        return data

    def removeBrokenPairs(self):
        new_low_res=[]
        for low_res in self.low_res_filenames:
            high_res_path = self.getHighResPath(low_res)
            if(path.exists(high_res_path)): new_low_res.append(low_res)
            else: logging.warning(f'Could not fint the HD counterpart for {low_res} at -> {high_res_path}')
        return new_low_res
    
    def sequenceSepcificIssuesFix(self, path, file):
        if path.count('/bvi') > 0: 
            if '1920x1088' in file:
                return file.replace("B", "A", 1)
            else:
                return file.replace("C", "B", 1)
        elif path.count('/ultravideo') > 0:
            file_segment = file.replace(".yuv", "").split("_")
            tmp = file_segment[-1]
            file_segment[-1] = file_segment[-2]
            file_segment[-2] = tmp
            new_filename = "_".join(file_segment)
            return f"{new_filename}.yuv"
        else: return file
    
    def getHighResPath(self, img_path):
        target_folder = path.dirname(img_path).replace(self.low_res_folder, self.high_res_folder)
        target_name = path.basename(img_path)
        target_name = re.sub("-qp[0-9][0-9]", "", target_name) # Remove the -qp## from name
        target_name = self.sequenceSepcificIssuesFix(target_folder, target_name)
        target_name = target_name.replace(self.prefix_low_res, self.prefix_high_res)
        target_name = target_name.replace(f'1920x1088', f'3840x2176') # HD-4K
        target_name = target_name.replace(f'960x544', f'1920x1088') # SD-HD
        return path.join(target_folder, target_name)

    def __getitem__(self, index):
        input_path = self.low_res_filenames[index]
        inputs = self.loadSequence(input_path, 1)
        
       
        target_path = self.getHighResPath(input_path)
        targets = self.loadSequence(target_path, self.scale)

        random_frame_index = 0
        if self.random_frame:
            frame_count = min(len(targets), len(inputs))
            random_frame_index = random.random * frame_count

        # Extract frame
        input = inputs[random_frame_index]
        target = targets[random_frame_index]
      
        ## to numpy
        input = self.toNumpy(input)
        target = self.toNumpy(target)

        if self.crop and self.crop > 10 :
            i, t, crop_info = paralellCrop(input, target, crop=self.crop, scale=self.scale, random=random)
            input = i
            target = t

        seed = self.random.randint(1000000)
        input = self.prepare(input, seed)
        target = self.prepare(target, seed)

        if self.return_names:
            return (input_path, input), (target_path, target)

        return (input, target)

    def __len__(self):
        return len(self.low_res_filenames)

class TestSequencies(data.Dataset):
    loaded = {}
    def __init__(self, lowres_path, target_path, scale, width, heigth, yuvFormat, yOnly=True):
        super(TestSequencies, self).__init__()
        self.yOnly = yOnly
        self.scale = scale
        self.width=width
        self.heigth=heigth
        self.yuvFormat=yuvFormat
        self.data_path=lowres_path
        self.target_path=target_path
        self.low_res_filenames = glob2.glob(f'{self.data_path}/**/*.yuv')
        self.low_res_filenames.sort()
        #self.low_res_filenames = [x for x in self.low_res_filenames if "qp-22" in x]

    def _getMax(self):
        return 1023

    def getDataRange(self):
        return 255

    def load(self, path_img, scale):
        return yuvio.imread(path_img, self.width*scale, self.heigth*scale, self.yuvFormat)
    
    def toNumpy(self, yuvIOimg):
        Y, U, V = yuvIOimg.split()
        if self.yOnly: return np.stack([Y,Y,Y])
        else: return np.stack([Y,U,V])

    def prepare(self, data):
        data = yuv_to_tensor(data)
                
        # Normalize for transfer learning
        data = data.mul(255/1023)

        return data

    def getSequenceName(self, img_path):
        return re.sub("_prop_qp-[0-9][0-9]", "", path.dirname(img_path).split("/")[-1])
    
    def getQP(self, img_path):
        base_sequence = path.dirname(img_path).split("/")[-1]
        for i in range(10, 100):
            if f'_qp{i}' in base_sequence: return i
        return 0
    
    def getTargetPath(self, img_path):
        sequenceName = self.getSequenceName(img_path)
        target_folder = path.join(self.target_path, f'{sequenceName}_3840x2176_50fps_10bit_420p')
        target_name = path.basename(img_path)
        return path.join(target_folder, target_name)

    def __getitem__(self, index):
        input_path = self.low_res_filenames[index]
        input = self.load(input_path, 1)
       
        target_path = self.getTargetPath(input_path)
        target = self.load(target_path, self.scale)
      
        ## to numpy
        input = self.toNumpy(input)
        target = self.toNumpy(target)
        
        
        input = self.prepare(input)
        target = yuv_to_tensor(target)

        return (input, target, {
            "sequence_name": self.getSequenceName(input_path),
            "qp": self.getQP(input_path),
            "frame": path.basename(input_path).replace(".yuv", "")
        })

    def __len__(self):
        return len(self.low_res_filenames)


class TestSequenciesEVCIntra(TestSequencies):
    def __init__(self, yOnly=True):
        super(TestSequenciesEVCIntra, self).__init__(
            '/trinity/home/mangelini/data/datasets/encodings_3x3_twice_4x4_large_invstride_cs-64_ps-32-16-8-4_jvet-B_e-1000-686cont_ds_randomaccess/data/prepared/low_res_420',
            '/trinity/home/mangelini/data/datasets/encodings_3x3_twice_4x4_large_invstride_cs-64_ps-32-16-8-4_jvet-B_e-1000-686cont_ds_randomaccess/data/prepared/target',
            2, 1920, 1088,'yuv420p10le', yOnly
        )

class TestSequenciesEVCHD4K(TestSequencies):
    def __init__(self, yOnly=True):
        super(TestSequenciesEVCHD4K, self).__init__(
            '/trinity/home/mangelini/data/datasets/MPAI-TestSets/HR/EVC_420',
            '/trinity/home/mangelini/data/datasets/encodings_3x3_twice_4x4_large_invstride_cs-64_ps-32-16-8-4_jvet-B_e-1000-686cont_ds_randomaccess/data/prepared/target',
            2, 1920, 1088,'yuv420p10le', yOnly
        )

    def __getitem__(self, index):
        input_path = self.low_res_filenames[index]
        input = self.load(input_path, 1)
       
        basename = input_path.split("/")[-1]
        frame_no=int(basename.split("_")[0].replace("frame", ""))
        sequence = basename.split("_")[1]
        original_path = getOriginalSequencePathFromSequenceName(sequence)
        target = yuvio.mimread(original_path, self.width*self.scale, self.heigth*self.scale, 'yuv420p10le', index=frame_no, count=1)[0]

      
        ## to numpy
        input = self.toNumpy(input)
        target = self.toNumpy(target)
        
        
        input = self.prepare(input)
        target = yuv_to_tensor(target)

        return (input, target, {
            "sequence_name": self.getSequenceName(input_path),
            "qp": self.getQP(input_path),
            "frame": path.basename(input_path).replace(".yuv", "")
        })
    

class TestSequenciesVVCHD4K(TestSequencies):
    def __init__(self, yOnly=True):
        super(TestSequenciesVVCHD4K, self).__init__(
            '/trinity/home/mangelini/data/datasets/MPAI-TestSets/HR/VVC',
            '/trinity/home/mangelini/data/datasets/encodings_3x3_twice_4x4_large_invstride_cs-64_ps-32-16-8-4_jvet-B_e-1000-686cont_ds_randomaccess/data/prepared/target',
            2, 1920, 1080,'gray10le', yOnly
        )

    def __getitem__(self, index):
        input_path = self.low_res_filenames[index]
        input = self.load(input_path, 1)
       
        basename = input_path.split("/")[-3]
        frame_no=int(input_path.split("/")[-1].split("_")[0].replace("frame", ""))
        sequence = basename.split("_")[1]
        original_path = getOriginalSequencePathFromSequenceName(sequence)
        target = yuvio.mimread(original_path, self.width*self.scale, self.heigth*self.scale, 'yuv420p10le', index=frame_no, count=1)[0]

      
        ## to numpy
        input = self.toNumpy(input)
        target = self.toNumpy(target)
        
        
        input = self.prepare(input)
        target = yuv_to_tensor(target)

        return (input, target, {
            "sequence_name": self.getSequenceName(input_path),
            "qp": self.getQP(input_path),
            "frame": path.basename(input_path).replace(".yuv", "")
        })

class TestSequenciesEVCSDHD(TestSequencies):
    def __init__(self, yOnly=True):
        super(TestSequenciesEVCSDHD, self).__init__(
            '/trinity/home/mangelini/data/datasets/MPAI-TestSets/SR/EVC_420',
            '',
            2, 1920//2, 1080//2,'yuv420p10le', yOnly
        )

    def __getitem__(self, index):
        input_path = self.low_res_filenames[index]
        input = self.load(input_path, 1)
       
        basename = input_path.split("/")[-1]
        frame_no=int(basename.split("_")[0].replace("frame", ""))
        sequence = basename.split("_")[1]
        original_path = getOriginalSequencePathFromSequenceName(sequence)
        target = yuvio.mimread(original_path, self.width*self.scale, self.heigth*self.scale, 'yuv420p10le', index=frame_no, count=1)[0]

      
        ## to numpy
        input = self.toNumpy(input)
        target = self.toNumpy(target)
        
        
        input = self.prepare(input)
        target = yuv_to_tensor(target)

        return (input, target, {
            "sequence_name": self.getSequenceName(input_path),
            "qp": self.getQP(input_path),
            "frame": path.basename(input_path).replace(".yuv", "")
        })

class TestSequenciesVVCSDHD(TestSequencies):
    def __init__(self, yOnly=True):
        super(TestSequenciesVVCSDHD, self).__init__(
            '/trinity/home/mangelini/data/datasets/MPAI-TestSets/SR/VVC',
            '',
            2, 1920//2, 1080//2,'yuv420p10le', yOnly
        )

    def __getitem__(self, index):
        input_path = self.low_res_filenames[index]
        input = self.load(input_path, 1)
       
        basename = input_path.split("/")[-1]
        frame_no=int(basename.split("_")[0].replace("frame", ""))
        sequence = basename.split("_")[1]
        original_path = getOriginalSequencePathFromSequenceName(sequence)
        target = yuvio.mimread(original_path, self.width*self.scale, self.heigth*self.scale, 'yuv420p10le', index=frame_no, count=1)[0]

      
        ## to numpy
        input = self.toNumpy(input)
        target = self.toNumpy(target)
        
        
        input = self.prepare(input)
        target = yuv_to_tensor(target)

        return (input, target, {
            "sequence_name": self.getSequenceName(input_path),
            "qp": self.getQP(input_path),
            "frame": path.basename(input_path).replace(".yuv", "")
        })